Echoes of ancient Earth identified by scientists?

Earth and galaxy (stock image). The currently favored theory says that the Moon was formed 4.5 billion years ago, when Earth collided with a Mars-sized mass, which has been given the name “Theia.” A group of scientists now believe that they have identified a sign that only part of Earth melted, and that an ancient part still exists within Earth’s mantle. Credit: © Tryfonov / Fotolia

A group of scientists believe that a previously unexplained isotopic ratio from deep within Earth may be a signal from material from the time before Earth collided with another planet-sized body, leading to the creation of the Moon. This may represent the echoes of the ancient Earth, which existed prior to the proposed collision 4.5 billion years ago. This work is being presented at the Goldschmidt conference in Sacramento, California.
The currently favored theory says that the Moon was formed 4.5 billion years ago, when Earth collided with a Mars-sized mass, which has been given the name “Theia.” According to this theory, the heat generated by the collision would have caused the whole planet to melt, before some of the debris cooled and spun off to create the Moon.

Now however, a group of scientists from Harvard University believe that they have identified a sign that only part of Earth melted, and that an ancient part still exists within Earth’s mantle.

According to lead researcher Associate Professor Sujoy Mukhopadhyay (Harvard):

“The energy released by the impact between Earth and Theia would have been huge, certainly enough to melt the whole planet. But we believe that the impact energy was not evenly distributed throughout the ancient Earth. This means that a major part of the impacted hemisphere would probably have been completely vaporized, but the opposite hemisphere would have been partly shielded, and would not have undergone complete melting.”

The team has analyzed the ratios of noble gas isotopes from deep within Earth’s mantle, and has compared these results to isotope ratios closer to the surface. The found that 3He to 22Ne ratio from the shallow mantle is significantly higher than the equivalent ratio in the deep mantle.

Professor Mukhopadhyay commented, “This implies that the last giant impact did not completely mix the mantle and there was not a whole mantle magma ocean.”

Additional evidence comes from analysis of the 129-Xenon to 130-Xenon ratio. It is known that material brought to the surface from the deep mantle (via mantle plumes) has a lower ratio than that normally found nearer the surface, for example in the basalts from mid-ocean ridges. Since 129-Xenon is produced by radioactive decay of 129-Iodine, these xenon isotopes put a time stamp on the formation age of the ancient parcel of mantle to within the first 100 million years of Earth’s history.

Professor Mukhopadhyay continued “The geochemistry indicates that there are differences between the noble gas isotope ratios in different parts of Earth, and these need to be explained. The idea that a very disruptive collision of Earth with another planet-sized body, the biggest event in Earth’s geological history, did not completely melt and homogenize Earth challenges some of our notions on planet formation and the energetics of giant impacts. If the theory is proven correct, then we may be seeing echoes of the ancient Earth, from a time before the collision.”

Commenting, Professor Richard Carlson (Carnegie Institute of Washington), Past President of the Geochemical Society said:

“This exciting result is adding to the observational evidence that important aspects of Earth’s composition were established during the violent birth of the planet and is providing a new look at the physical processes by which this can occur.”

Note : The above story is based on materials provided by European Association of Geochemistry.