back to top
27.8 C
New York
Friday, November 29, 2024
Home Blog Page 17

Plesiosaur fossils found in the Sahara suggest they weren’t just marine animals

Plesiosaurus and spinosaurus may have both inhabited freshwater rivers
Plesiosaurus and spinosaurus may have both inhabited freshwater rivers

Fossils of small plesiosaurs, long-necked marine reptiles from the age of dinosaurs, have been found in a 100-million year old river system that is now Morocco’s Sahara Desert. This discovery suggests some species of plesiosaur, traditionally thought to be sea creatures, may have lived in freshwater.

Plesiosaurs, first found in 1823 by fossil hunter Mary Anning, were prehistoric reptiles with small heads, long necks, and four long flippers. They inspired reconstructions of the Loch Ness Monster, but unlike the monster of Lake Loch Ness, plesiosaurs were marine animals — or were widely thought to be.

Now, scientists from the University of Bath and University of Portsmouth in the UK, and Université Hassan II in Morocco, have reported small plesiosaurs from a Cretaceous-aged river in Africa.

The fossils include bones and teeth from three-metre long adults and an arm bone from a 1.5 metre long baby. They hint that these creatures routinely lived and fed in freshwater, alongside frogs, crocodiles, turtles, fish, and the huge aquatic dinosaur Spinosaurus.

These fossils suggest the plesiosaurs were adapted to tolerate freshwater, possibly even spending their lives there, like today’s river dolphins.

The new paper was headed by University of Bath Student Georgina Bunker, along with Nick Longrich from the University of Bath’s Milner Centre for Evolution, David Martill and Roy Smith from the University of Portsmouth, and Samir Zouhri from the Universite Hassan II.

The fossils include vertebrae from the neck, back, and tail, shed teeth, and an arm bone from a young juvenile.

“It’s scrappy stuff, but isolated bones actually tell us a lot about ancient ecosystems and animals in them. They’re so much more common than skeletons, they give you more information to work with” said Dr. Nick Longrich, corresponding author on the paper.

“The bones and teeth were found scattered and in different localities, not as a skeleton. So each bone and each tooth is a different animal. We have over a dozen animals in this collection.”

Whilst bones provide information on where animals died, the teeth are interesting because they were lost while the animal was alive — so they show where the animals lived.

What’s more, the teeth show heavy wear, like those fish-eating dinosaur Spinosaurus found in the same beds.

The scientists say that implies the plesiosaurs were eating the same food- chipping their teeth on the armored fish that lived in the river. This hints they spent a lot of time in the river, rather than being occasional visitors.

While marine animals like whales and dolphins wander up rivers, either to feed or because they’re lost, the number of plesiosaur fossils in the river suggest that’s unlikely.

A more likely possibility is that the plesiosaurs were able to tolerate fresh and salt water, like some whales, such as the beluga whale.

It’s even possible that the plesiosaurs were permanent residents of the river, like modern river dolphins. The plesiosaurs’ small size would have let them hunt in shallow rivers, and the fossils show an incredibly rich fish fauna.

Dr Longrich said: “We don’t really know why the plesiosaurs are in freshwater.

“It’s a bit controversial, but who’s to say that because we paleontologists have always called them ‘marine reptiles’, they had to live in the sea? Lots of marine lineages invaded freshwater.”

Freshwater dolphins evolved at least four times — in the Ganges River, the Yangtze River, and twice in the Amazon. A species of freshwater seal inhabits Lake Baikal, in Siberia, so it’s possible plesiosaurs adapted to freshwater as well.

The plesiosaurs belong to the family Leptocleididae- a family of small plesiosaurs often found in brackish or freshwater elsewhere in England, Africa, and Australia. And other plesiosaurs, including the long-necked elasmosaurs, turn up in brackish or fresh waters in North America and China.

Plesiosaurs were a diverse and adaptable group, and were around for more than 100 million years. Based on what they’ve found in Africa — and what other scientists have found elsewhere — the authors suggest they might have repeatedly invaded freshwater to different degrees.

“We don’t really know, honestly. That’s how paleontology works. People ask, how can paleontologists know anything for certain about the lives of animals that went extinct millions of years ago? The reality is, we can’t always. All we can do is make educated guesses based on the information we have. We’ll find more fossils. Maybe they’ll confirm those guesses. Maybe not.”

“It’s been really interesting to see the direction this project has gone in,” said lead author Georgina Bunker. The study initially began as an undergraduate project involving a single bone, but over time, more plesiosaur fossils started turning up, slowly providing a clearer picture of the animal.

The new discovery also expands the diversity of Morocco’s Cretaceous. Said Dr. Samir Zouhri, “This is another sensational discovery that adds to the many discoveries we have made in the Kem Kem over the past fifteen years of work in this region of Morocco. Kem Kem was truly an incredible biodiversity hotspot in the Cretaceous.”

“What amazes me” said coauthor Dave Martill, “is that the ancient Moroccan river contained so many carnivores all living alongside each other. This was no place to go for a swim.”

But what does this all mean for the plausibility of something like a Loch Ness Monster? On one level, it’s plausible. Plesiosaurs weren’t confined to the seas, they did inhabit freshwater. But the fossil record also suggests that after almost a hundred and fifty million years, the last plesiosaurs finally died out at the same time as the dinosaurs, 66 million years ago.

Reference:
Georgina Bunker, David M. Martill, Roy Smith, Samir Zourhi, Nick Longrich. Plesiosaurs from the fluvial Kem Kem Group (mid-Cretaceous) of eastern Morocco and a review of non-marine plesiosaurs. Cretaceous Research, 2022; 105310 DOI: 10.1016/j.cretres.2022.105310

Note: The above post is reprinted from materials provided by University of Bath.

Iceland volcano eruption opens a rare window into the Earth beneath our feet

he Fagradalsfjall eruption site viewed from above. The photo shows lava emanating from multiple vents. Tourists for scale.  Photograph: Alina V. Shevchenko and Edgar U. Zorn, GFZ Germany
he Fagradalsfjall eruption site viewed from above. The photo shows lava emanating from multiple vents. Tourists for scale.
Photograph: Alina V. Shevchenko and Edgar U. Zorn, GFZ Germany

The recent Fagradalsfjall eruption in the southwest of Iceland has enthralled the whole world, including nature lovers and scientists alike. The eruption was especially important as it provided geologists with a unique opportunity to study magmas that were accumulated in a deep crustal magma reservoir but ultimately derived from the Earth’s mantle (below 20 km).

A research team from University of Oregon, Uppsala University, University of Iceland, and Deutsches GeoForschungsZentrum (GFZ) took this exceptional opportunity to collect lava samples every few days in order to construct a time-integrated catalogue of samples and to monitor the geochemical evolution throughout the eruption to a degree of detail rarely achieved before. Usually, when volcano scientists look at past eruptions they work with a limited view of the erupted materials — for example older lava flows can get wholly or partially buried by newer ones. However, at Fagradalsfjall, the eruption was so well monitored and sampled that scientists had a chance to capture the evolution of an Icelandic eruption in near real-time.

The team were interested in oxygen isotopes. Why? Because oxygen makes up about 50% of all volcanic rocks and its isotope ratios are very sensitive tracers of mantle and crustal materials. In this way, oxygen isotopes can help scientists to determine if magma is mantle-derived or if it interacted with crustal materials as it made its way to the surface. However, in addition to oxygen, the other vast suite of elements making up the volcanic rocks threw up some surprises. For instance, the team observed that this single eruption contains roughly half of the entire diversity of mantle-derived magmas previously recorded for the whole of Iceland.

In brief, geochemical results show that the latest Iceland eruption was supplied by magmas derived from multiple sources in the Earth’s mantle, each with its own distinctive elemental characteristics. To the amazement of scientists, each of these domains had identical oxygen isotope ratios. This result was remarkable and has never been observed before at an active eruption. The study provides new and compelling evidence for distinct mantle-sourced magmas having uniform oxygen isotope ratios, which can help us to better understand mantle dynamics and refine mantle models for Iceland.

Reference:
I. N. Bindeman, F. M. Deegan, V. R. Troll, T. Thordarson, Á. Höskuldsson, W. M. Moreland, E. U. Zorn, A. V. Shevchenko, T. R. Walter. Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-31348-7

Note: The above post is reprinted from materials provided by Uppsala University.

Rare deep-sea brine pools discovered in Red Sea

Brine pools are one of the most extreme environments on Earth, yet despite their high salinity, exotic chemistry, and complete lack of oxygen, these pools are teeming with life.
Brine pools are one of the most extreme environments on Earth, yet despite their high salinity, exotic chemistry, and complete lack of oxygen, these pools are teeming with life.

Researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science recently discovered rare deep-sea brine pools in the Gulf of Aqaba, a northern extension to the Red Sea. These salty underwater lakes hold secrets into the way oceans on Earth formed millions of years ago, and offer clues to life on other planets.

In partnership with OceanX, Sam Purkis, professor and chair of the UM Department of Marine Geosciences and team made their discovery more than one mile beneath the sea surface (1,770 meters) using a remotely operated underwater vehicle (ROV) on the OceanXplorer, a highly equipped research vessel capable of exploring the most unreachable places on Earth.

“Until we understand the limits of life on Earth, it will be difficult to determine if alien planets can host any living beings,” said Purkis. “Our discovery of a rich community of microbes that survive in extreme environments can help trace the limits of life on Earth and can be applied to the search for life elsewhere in our solar system and beyond.”

Brine pools are one of the most extreme environments on Earth, yet despite their high salinity, exotic chemistry, and complete lack of oxygen, these pools are teeming with life. Bioactive molecules with potential anticancer properties have previously been isolated from brine pool microbes in the Red Sea.

The research, published in Nature Communications, is the first discovery of brine pools in the Gulf of Aqaba.

“We were very lucky,” said Purkis. “The discovery came in the last five minutes of the ten-hour ROV dive that we could dedicate to this project.”

Located close to the coastline, these extremely salty, zero oxygen pools preserve information on tsunami, flashfloods, and earthquakes in the Gulf of Aqaba that took place thousands of years ago. There are many faults and fractures in the seabed associated with the tectonics of the region in this area of the Gulf of Aqaba.

Earlier this year, Purkis and team discovered evidence of a 500-year-old submarine landslide that likely spawned a sizable tsunami in the region, that could have implications for coastline development in Egypt and Saudi Arabia.

Reference:
Sam J. Purkis, Hannah Shernisky, Peter K. Swart, Arash Sharifi, Amanda Oehlert, Fabio Marchese, Francesca Benzoni, Giovanni Chimienti, Gaëlle Duchâtellier, James Klaus, Gregor P. Eberli, Larry Peterson, Andrew Craig, Mattie Rodrigue, Jürgen Titschack, Graham Kolodziej, Ameer Abdulla. Discovery of the deep-sea NEOM Brine Pools in the Gulf of Aqaba, Red Sea. Communications Earth & Environment, 2022; 3 (1) DOI: 10.1038/s43247-022-00482-x

Note: The above post is reprinted from materials provided by University of Miami Rosenstiel School of Marine & Atmospheric Science. Original written by Diana Udel.

Shockwave caused by Tonga underwater eruption may help scientists predict future tsunami

Fig. 1: The giant ash cloud that erupted from Hunga Tonga–Hunga Ha'apai, taken by the Himawari-8 satellite    Credit: EyePress News/Shutterstock
Fig. 1: The giant ash cloud that erupted from Hunga Tonga–Hunga Ha’apai, taken by the Himawari-8 satellite
Credit: EyePress News/Shutterstock

Using data from the eruption of the underwater volcano near Tonga in 2022, a research group at Nagoya University in Japan has used disturbances in the Earth’s upper atmosphere to track the airwaves that cause tsunami. Their findings may lead to speedier predictions of these giant waves.

Every minute is crucial when warning people caught in the path of a tsunami. After the 2004 Indian Ocean earthquake, a tsunami in Indonesia reached Sri Lanka in less than two hours. Eight hours later, it arrived on the coast of Kenya. If there had been a way to notify people about the dangers of a tsunami in those faraway areas, it may have been possible to save at least some of the 230,000 victims.

A research group led by Assistant Professor Atsuki Shinbori, Associate Professor Yuichi Otsuka, and Associate Professor Nozomu Nishitani of the Institute for Space-Earth Environmental Research (ISEE), Nagoya University, in collaboration with the National Institute of Information and Communications Technology and the University of Electro-Communications, believes that it may be possible to predict tsunami faster by tracking the atmospheric disturbances caused by the airwaves they create. Their findings were reported in Earth, Planets and Space.

When a tsunami occurs, it deforms the lower atmosphere and generates oscillations of sound and gravity waves, causing disturbances of the electrons in the upper atmosphere, also called the ionosphere. Radio waves, such as those used in GPS and satellite broadcasting/communications, also pass through this part of the atmosphere. As a result, the disturbances caused by a natural disaster produce errors in the positional information supplied by GPS satellites.

Shinbori and his group used satellites and radar to examine these errors following the 2022 undersea volcanic eruption off the coast of Tonga in the South Pacific. They found that the eruption of the underwater volcano caused waves of air pressure that spread as far as Australia and Japan. These waves oscillated the lower part of the ionosphere. This generated an electric field that was then transmitted at high speed to the upper ionosphere. To their surprise, the researchers detected the electron changes much earlier than the air pressure waves that caused the tsunami.

The structures of the disturbance over Japan and Australia, interestingly, also mirrored each other. Despite being in different hemispheres, they occurred almost simultaneously because they disturbed the electrons in the magnetic field lines, the magnetic lines that radiate from the south to the north magnetic pole. The team calculated the speed of these disturbances and found the electromagnetic wave along the magnetic field lines travelled at 1000 kilometers (621.4 miles) per second. This was far faster than the air pressure wave, which traveled at the speed of sound (a comparatively slower 315 meters (0.2 miles) per second).

“We captured the signal of the ionospheric disturbance caused by the air pressure wave about three hours before the pressure wave originating from the volcanic eruption believed to have triggered the tsunami in Japan,” Shinbori explains. “In short, the significance of these results can be divided into two aspects: the scientific aspect of a coupled system, and the disaster prevention aspect of preparedness for severe events such as tsunamis.”

Future applications of the technique are already being considered. “Statistical analysis of ionospheric disturbances during volcanic eruptions and seismic events may make it possible to estimate tsunami wave heights and sizes from ionospheric disturbance signals in the future,” Shinbori says. “Ionospheric disturbances may be a new step forward in tsunami alerts.”

This research was supported by a Grant-in-Aid for Specially Promoted Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS), which began in FY2016, “Study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations (PWING Project).”

Reference:
Atsuki Shinbori, Yuichi Otsuka, Takuya Sori, Michi Nishioka, Septi Perwitasari, Takuo Tsuda, Nozomu Nishitani. Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth, Planets and Space, 2022; 74 (1) DOI: 10.1186/s40623-022-01665-8

Note: The above post is reprinted from materials provided by Nagoya University.

Study refutes claim that T. rex was three separate species

Paleontologists originally thought that T. rex had three claws, but later determined that it only had two. R. Mickens/©AMNH
Paleontologists originally thought that T. rex had three claws, but later determined that it only had two.
R. Mickens/©AMNH

A new study refutes a provocative claim made earlier this year that fossils classified as the dinosaur Tyrannosaurus rex represent three separate species. The rebuttal, published today in the journal Evolutionary Biology and led by paleontologists at the American Museum of Natural History and Carthage College, finds that the earlier proposal lacks sufficient evidence to split up the iconic species.

“Tyrannosaurus rex remains the one true king of the dinosaurs,” said study co-author Steve Brusatte, a paleontologist at the University of Edinburgh who conducted his Ph.D. work at the Museum. “Recently, a bold theory was announced to much fanfare: what we call T. rex was actually multiple species. It is true that the fossils we have are somewhat variable in size and shape, but as we show in our new study, that variation is minor and cannot be used to neatly separate the fossils into easily defined clusters. Based on all the fossil evidence we currently have, T. rex stands alone as the single giant apex predator from the end of the Age of Dinosaurs in North America.”

In March 2022, authors of the controversial study, also published in Evolutionary Biology, made the case that T. rex should be reclassified as three species: the standard T. rex, the bulkier “T. imperator,” and the slimmer “T. regina.” The study was based on analysis of the leg bones and teeth of 38 T. rex specimens.

The authors of the new study revisited the data presented in the earlier paper and also added data points from 112 species of living dinosaurs — birds — and from four non-avian theropod dinosaurs. They found that the multiple species argument was based on a limited comparative sample, non-comparable measurements, and improper statistical techniques.

“Their study claimed that the variation in T. rex specimens was so high that they were probably from multiple closely related species of giant meat-eating dinosaur,” said James Napoli, co-lead author of the rebuttal study and a graduating doctoral student in the Museum’s Richard Gilder Graduate School. “But this claim was based on a very small comparative sample. When compared to data from hundreds of living birds, we actually found that T. rex is less variable than most living theropod dinosaurs. This line of evidence for proposed multiple species doesn’t hold up.”

“Pinning down variation in long-extinct animals is a major challenge for paleontologists,” said co-lead author Thomas Carr from Carthage College. “Our study shows that rigorous statistical analyses that are grounded in our knowledge of living animals is the best way to clarify the boundaries of extinct species. In practical terms, the three-species model is so poorly defined that many excellent specimens can’t be identified. That’s a clear warning sign of a hypothesis that doesn’t map onto the real world.”

The original paper asserted that variation in the size of the second tooth in the lower jaw, in addition to robustness of the femur, indicated the presence of multiple species. But the authors of the new study could not replicate the tooth findings, and they recovered different results from their own measurements of the same specimens. In addition, the authors of the new study took issue with how the “breakpoints” for each species using these traits were statistically determined. The statistical analysis in the original study defined the number of groups before the test was run, so it is not useful for testing the hypothesis, according to the authors of the new study. In the latest study, a different statistical technique was used to determine how many clusters exist within the data without any advanced assumptions, finding that they are best considered as a single group — in other words, one species — T. rex.

“The boundaries of even living species are very hard to define: for instance, zoologists disagree over the number of living species of giraffe,” said co-author Thomas Holtz, from the University of Maryland and the National Museum of Natural History. “It becomes much more difficult when the species involved are ancient and only known from a fairly small number of specimens. Other sources of variation — changes with growth, with region, with sex, and with good old-fashioned individual differences — have to be rejected before one accepts the hypothesis that two sets of specimens are in fact separate species. In our view, that hypothesis is not yet the best explanation.”

“T. rex is an iconic species and an incredibly important one for both paleontological research and communicating to the public about science, so it’s important that we get this right,” said co-author David Hone, from Queen Mary University of London. “There is still a good chance that there is more than one species of Tyrannosaurus out there, but we need strong evidence to make that kind of decision.”

Reference:
Thomas D. Carr, James G. Napoli, Stephen L. Brusatte, Thomas R. Holtz, David W. E. Hone, Thomas E. Williamson, Lindsay E. Zanno. Insufficient Evidence for Multiple Species of Tyrannosaurus in the Latest Cretaceous of North America: A Comment on “The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and P. Evolutionary Biology, 2022; DOI: 10.1007/s11692-022-09573-1

Note: The above post is reprinted from materials provided by American Museum of Natural History.

A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms

Articulated left tibia and pes
Articulated left tibia and pes

A team co-led by University of Minnesota Twin Cities researcher Peter Makovicky and Argentinean colleagues Juan Canale and Sebastian Apesteguía has discovered a new huge, meat-eating dinosaur, dubbed Meraxes gigas. The new dinosaur provides clues about the evolution and biology of dinosaurs such as the Carcharodontosaurus and Tyrannosaurus rex — specifically, why these animals had such big skulls and tiny arms.

The study is published in Current Biology, a peer-reviewed scientific biology journal.

The researchers initially discovered Meraxes in Patagonia in 2012 and have spent the last several years extracting, preparing, and analyzing the specimen. The dinosaur is part of the Carcharodontosauridae family, a group of giant carnivorous theropods that also includes Giganotosaurus, one of the largest known meat-eating dinosaurs and one of the reptilian stars of the recently released “Jurassic World: Dominion” movie.

Though not the largest among carcharodontosaurids, Meraxes was still an imposing animal measuring around 36 feet from snout to tail tip and weighing approximately 9,000 pounds. The researchers recovered the Meraxes from rocks that are around 90-95 million years old, alongside other dinosaurs including several long-necked sauropod specimens.

Meraxes is among the most complete carcharodontosaurid skeleton paleontologists have found yet in the southern hemisphere and includes nearly the entirety of the animal’s skull, hips, and both left and right arms and legs.

“The neat thing is that we found the body plan is surprisingly similar to tyrannosaurs like T. rex,” said Peter Makovicky, one of the principal authors of the study and a professor in the University of Minnesota N.H. Winchell School of Earth and Environmental Sciences. “But, they’re not particularly closely related to T. rex. They’re from very different branches of the meat-eating dinosaur family tree. So, having this new discovery allowed us to probe the question of, ‘Why do these meat-eating dinosaurs get so big and have these dinky little arms?'”

“The discovery of this new carcharodontosaurid, the most complete up to now, gives us an outstanding opportunity to learn about their systematics, paleobiology, and true size like never before,” said Sebastian Apesteguía, a co-author of the study and a researcher at Maimónides University in Argentina.

With the statistical data that Meraxes provided, the researchers found that large, mega-predatory dinosaurs in all three families of therapods grew in similar ways. As they evolved, their skulls grew larger and their arms progressively shortened.

The possible uses of the tiny forelimbs in T. rex and other large carnivorous dinosaurs have been the topic of much speculation and debate.

“What we’re suggesting is that there’s a different take on this,” Makovicky said. “We shouldn’t worry so much about what the arms are being used for, because the arms are actually being reduced as a consequence of the skulls becoming massive. Whatever the arms may or may not have been used for, they’re taking on a secondary function since the skull is being optimized to handle larger prey.”

The researchers also found that carcharodontosaurids including species from Patagonia evolved very quickly, but then disappeared suddenly from the fossil record very soon after.

“Usually when animals are on the verge of extinction, it’s because they’re evolutionary rates are quite slow, meaning they aren’t adapting very quickly to their environment,” explained Juan Canale, the study’s lead author and a researcher at the National University of Río Negro. “Here, we have evidence that Meraxes and its relatives were evolving quite fast and yet within a few million years of being around, they disappeared, and we don’t know why. It’s one of these finds where you answer some questions, but it generates more questions for the future.”

The research was funded by the National Geographic Society, Municipalidad de Villa El Chocón, Fundación “Félix de Azara,” and the Field Museum in Chicago.

In addition to Makovicky, Apesteguía, and Canale, the research team included National University of Río Negro researcher Alejandro Haluza; Maimónides University researcher Pablo Gallina; West Virginia Institute of Technology Assistant Professor Jonathan Mitchell; Natural History Museum of Los Angeles County researcher Nathan Smith; Carleton University researchers Thomas Cullen; Akiko Shinya of the Field Museum in Chicago; and National University of San Luis researcher Federico Gianechini.

Reference:
Juan I. Canale, Sebastián Apesteguía, Pablo A. Gallina, Jonathan Mitchell, Nathan D. Smith, Thomas M. Cullen, Akiko Shinya, Alejandro Haluza, Federico A. Gianechini, Peter J. Makovicky. New giant carnivorous dinosaur reveals convergent evolutionary trends in theropod arm reduction. Current Biology, 2022; DOI: 10.1016/j.cub.2022.05.057

Note: The above post is reprinted from materials provided by University of Minnesota.

Europe’s largest land predator unearthed on the Isle of Wight

Illustration of White Rock spinosaurid by Anthony Hutchings. Credit: UoS/A Hutchings
Illustration of White Rock spinosaurid by Anthony Hutchings. Credit: UoS/A Hutchings

Research led by palaeontologists at the University of Southampton has identified the remains of one of Europe’s largest ever land-based hunters: a dinosaur that measured over 10m long and lived around 125 million years ago.

Several prehistoric bones, uncovered on the Isle of Wight, on the south coast of England, and housed at Dinosaur Isle Museum in Sandown, belonged to a type of two-legged, crocodile-faced predatory dinosaur known as spinosaurids. Dubbed the ‘White Rock spinosaurid’ — after the geological layer in which it was found — it was a predator of impressive proportions.

“This was a huge animal, exceeding 10 m in length and probably several tonnes in weight. Judging from some of the dimensions, it appears to represent one of the largest predatory dinosaur ever found in Europe — maybe even the biggest yet known,” said PhD student Chris Barker, who led the study. “It’s a shame it’s only known from a small amount of material, but these are enough to show it was an immense creature.”

The discovery follows previous work on spinosaurids by the University of Southampton team, which published a study on the discovery of two new species in 2021.

The bones of the ‘White Rock spinosaurid’, which include huge pelvic and tail vertebrae, amongst other pieces, were discovered near Compton Chine, on the southwest coast of the Isle of Wight. The Cretaceous rocks are famous for their dinosaurs, but little appreciated is the fact that the Island’s fossil record preserves dinosaurs from more than one section of history — and some of those sections, even today, are poorly known.

“Unusually, this specimen eroded out of the Vectis Formation, which is notoriously poor in dinosaur fossils,” said corresponding author Dr Neil Gostling, who teaches evolution and palaeobiology at the University of Southampton. “It’s likely to be the youngest spinosaur material yet known from the UK.”

The 125 million year old Vectis Formation preserves the beginning of a period of rising sea levels, where the ‘White Rock spinosaurid’ stalked lagoonal waters and sandflats in search of food.

“Because it’s only known from fragments at the moment, we haven’t given it a formal scientific name” said co-author Darren Naish. He added: “We hope that additional remains will turn up in time.

“This new animal bolsters our previous argument — published last year — that spinosaurid dinosaurs originated and diversified in western Europe before becoming more widespread.”

Marks on the bone also showed how, even after death, the body of this giant probably supported a range of scavengers and decomposers.

“Most of these amazing fossils were found by Nick Chase, one of Britain’s most skilled dinosaur hunters, who sadly died just before the Covid epidemic,” said co-author Jeremy Lockwood, a PhD student at the University of Portsmouth and Natural History Museum. “I was searching for remains of this dinosaur with Nick and found a lump of pelvis with tunnels bored into it, each about the size of my index finger. We think they were caused by bone eating larvae of a type of scavenging beetle. It’s an interesting thought that this giant killer wound up becoming a meal for a host of insects.”

The researchers hope to generate thin sections of the material to look at the microscopic internal properties of the bones in the near future, which may provide information about its growth rate and possible age.

Reference:
Chris T. Barker, Jeremy A.F. Lockwood, Darren Naish, Sophie Brown, Amy Hart, Ethan Tulloch, Neil J. Gostling. A European giant: a large spinosaurid (Dinosauria: Theropoda) from the Vectis Formation (Wealden Group, Early Cretaceous), UK. PeerJ, 2022; 10: e13543 DOI: 10.7717/peerj.13543

Note: The above post is reprinted from materials provided by University of Southampton.

The Earth moves far under our feet: A new study shows the inner core oscillates

inner core (USC Graphic/Edward Sotelo)
inner core (USC Graphic/Edward Sotelo)

USC scientists have found evidence that the Earth’s inner core oscillates, contradicting previously accepted models that suggested it consistently rotates at a faster rate than the planet’s surface.

Their study, published today in Science Advances, shows that the inner core changed direction in the six-year period from 1969-74, according to the analysis of seismic data. The scientists say their model of inner core movement also explains the variation in the length of day, which has been shown to oscillate persistently for the past several decades.

“From our findings, we can see the Earth’s surface shifts compared to its inner core, as people have asserted for 20 years,” said John E. Vidale, co-author of the study and Dean’s Professor of Earth Sciences at USC Dornsife College of Letters, Arts and Sciences. “However, our latest observations show that the inner core spun slightly slower from 1969-71 and then moved the other direction from 1971-74. We also note that the length of day grew and shrank as would be predicted.

“The coincidence of those two observations makes oscillation the likely interpretation.”

Analysis of atomic tests pinpoints rotation rate and direction

Our understanding of the inner core has expanded dramatically in the past 30 years. The inner core — a hot, dense ball of solid iron the size of Pluto — has been shown to move and/or change over decades. It’s also impossible to observe directly, meaning researchers struggle through indirect measurements to explain the pattern, speed and cause of the movement and changes.

Research published in 1996 was the first to propose the inner core rotates faster than the rest of the planet — also known as super-rotation — at roughly 1 degree per year. Subsequent findings from Vidale reinforced the idea that the inner core super-rotates, albeit at a slower rate.

Utilizing data from the Large Aperture Seismic Array (LASA), a U.S. Air Force facility in Montana, researcher Wei Wang and Vidale found the inner core rotated slower than previously predicted, approximately 0.1 degrees per year. The study analyzed waves generated from Soviet underground nuclear bomb tests from 1971-74 in the Arctic archipelago Novaya Zemlya using a novel beamforming technique developed by Vidale.

The new findings emerged when Wang and Vidale applied the same methodology to a pair of earlier atomic tests beneath Amchitka Island at the tip of the Alaskan archipelago — Milrow in 1969 and Cannikin in 1971. Measuring the compressional waves resulting from the nuclear explosions, they discovered the inner core had reversed direction, sub-rotating at least a tenth of a degree per year.

This latest study marked the first time the well-known six-year oscillation had been indicated through direct seismological observation.

“The idea the inner core oscillates was a model that was out there, but the community has been split on whether it was viable,” Vidale says. “We went into this expecting to see the same rotation direction and rate in the earlier pair of atomic tests, but instead we saw the opposite. We were quite surprised to find that it was moving in the other direction.”

Future research to dig deeper into why inner core formed

Vidale and Wang both noted future research would depend on finding sufficiently precise observations to compare against these results. By using seismological data from atomic tests in previous studies, they have been able to pinpoint the exact location and time of the very simple seismic event, says Wang. However, the Montana LASA closed in 1978 and the era of U.S. underground atomic testing is over, meaning that the researchers would need to rely on comparatively imprecise earthquake data, even with recent advances in instrumentation.

The study does support the speculation that the inner core oscillates based on variations in the length of day — plus or minus 0.2 seconds over six years — and geomagnetic fields, both of which match the theory in both amplitude and phase. Vidale says the findings provide a compelling theory for many questions posed by the research community.

“The inner core is not fixed — it’s moving under our feet, and it seems to going back and forth a couple of kilometers every six years,” Vidale said. “One of the questions we tried to answer is, does the inner core progressively move or is it mostly locked compared to everything else in the long term? We’re trying to understand how the inner core formed and how it moves over time — this is an important step in better understanding this process.”

Reference:
Wei Wang, John E. Vidale. Seismological observation of Earth’s oscillating inner core. Science Advances, 2022; 8 (23) DOI: 10.1126/sciadv.abm9916

Note: The above post is reprinted from materials provided by University of Southern California. Original written by Paul McQuiston.

Yellowstone’s history of hydrothermal explosions over the past 14,000 years

Yellowstone National Park
Yellowstone National Park

While much of public attention on Yellowstone focuses on its potential to produce large supereruptions, the hazards that are much more likely to occur are smaller, violent hydrothermal explosions. Hydrothermal explosions occur when near-boiling water suddenly flashes into steam, releasing large amounts of energy. The energy release fractures the rock downward, often leaving behind a crater. The same sources that can produce these explosions are what give Yellowstone its well-known hot springs, geysers, and fumaroles.

The Yellowstone Lake area in Yellowstone National Park hosts at least eight large craters produced by hydrothermal explosions, including three of the largest hydrothermal explosion craters known on Earth. Compared to other areas of interest within Yellowstone, hydrothermal explosion craters have not been as thoroughly studied. In a new study published on Tuesday in GSA Bulletin, researchers evaluated the history of hydrothermal explosions at Yellowstone Lake over the past 14,000.

“The hydrothermal system in Yellowstone is the largest in the world and is driven by high heat flow over a large area, by high precipitation rates, and by active seismicity and deformation. Over 10,000 hydrothermal features are present in Yellowstone,” said Lisa Morgan, lead author of the study. “For this study, we wanted to know more about the recent geologic history of Yellowstone Lake and what role hydrothermal activity has had in the lake, especially the role of hydrothermal explosions and their triggering mechanisms.”

The research team collected sediment cores from across the northern portion of Yellowstone Lake and correlated them with cores that were previously collected in the vicinity, with the goal of characterizing their chemical and physical attributes and identifying hydrothermal explosion deposits in the cores.

“Hydrothermal explosion sediments deposited underwater had never been described in published literature. In analyzing the cores, we made a lot of discoveries and had several surprises. Number one was how different the explosion deposits found in the cores looked from explosion deposits on land. That was to be expected since one was deposited through a water column and one was deposited on land,” said Morgan.

The researchers found evidence for at least 16 deposits in the cores that were produced by hydrothermal explosions. While 14 of the deposits represented more localized explosion events, two of the deposits were associated with two of Yellowstone’s largest hydrothermal explosion craters: the Mary Bay and Elliott’s craters.

The Mary Bay hydrothermal explosion occurred 13,000 years ago and resulted in a 2.5-km (1.5-mi) wide crater, which is partly submerged under the lake. While deposits from the Mary Bay explosion exposed on land had been previously studied, the sediment cores from the lake demonstrated that the extent of its deposits was larger than previously thought and that the lake level must have been lower at the time of the explosion.

The researchers concluded that the Mary Bay explosion was triggered by a sudden 14-m (46-ft) drop in lake level caused by a seismic event and a tsunami that eroded the outlet waterway of Yellowstone Lake.

The Elliott’s Crater explosion occurred 8,000 years ago and produced a 700-m (2,300-ft) wide crater. The crater is fully submerged underwater, and no deposits from the explosion are exposed on land. Based on records in the cores, the deposits from Elliott’s Crater were also more broadly distributed than previously thought.

Differing from how the Mary Bay Crater likely formed, the researchers determined that Elliott’s Crater formed when a seismic event fractured the dome cap of the hydrothermal system. In Yellowstone Lake, hydrothermal domes form when underlying pockets of gas or gas-charged fluids cause overlying sediments to arch upwards. Rupturing this dome would result in a sudden loss of pressure, triggering a hydrothermal explosion.

Many of the smaller deposits in the sediment cores were from previously unknown younger hydrothermal explosions. As has been consistent with previous studies of the explosion craters, there appears to be no relation between them and volcanic eruptions at Yellowstone.

“Given what we see from Yellowstone Lake and elsewhere in Yellowstone, hydrothermal explosions of various scales will continue to occur,” said Morgan.

Reference:
L.A. Morgan, W.C.P. Shanks, K.L. Pierce, N. Iverson, C.M. Schiller, S.R. Brown, P. Zahajska, R. Cartier, R.W. Cash, J.L. Best, C. Whitlock, S. Fritz, W. Benzel, H. Lowers, D.A. Lovalvo, J.M. Licciardi. The dynamic floor of Yellowstone Lake, Wyoming, USA: The last 14 k.y. of hydrothermal explosions, venting, doming, and faulting. GSA Bulletin, 2022; DOI: 10.1130/B36190.1

Note: The above post is reprinted from materials provided by Geological Society of America.

Bizarre meat-eating dinosaur joins ‘Rogues’ Gallery’ of giant predators from classic fossil site in Egypt’s Sahara Desert

Andrew McAfee, Carnegie Museum of Natural History
Andrew McAfee, Carnegie Museum of Natural History

An Egyptian-American team of researchers has announced the discovery of a new kind of large-bodied meat-eating dinosaur, or theropod, from a celebrated fossil site in Egypt’s Sahara Desert. The fossil of a still-unnamed species provides the first known record of the abelisaurid group of theropods from a middle Cretaceous-aged (approximately 98 million years old) rock unit known as the Bahariya Formation, which is exposed in the Bahariya Oasis of the Western Desert of Egypt.

In the early 20th century, this locality famously yielded the original specimens of a host of remarkable dinosaurs — including the colossal sail-backed fish-eater Spinosaurus — which were then destroyed in World War II. Abelisaurid fossils had previously been found in Europe and in many of today’s Southern Hemisphere continents, but never before from the Bahariya Formation. The team describes the Bahariya abelisaurid discovery in a paper published today in Royal Society Open Science.

The study was led by Ohio University graduate student Belal Salem, based on work he initiated while a member of the Mansoura University Vertebrate Paleontology Center (MUVP) in Mansoura, Egypt. The research team also included Ohio University Heritage College of Osteopathic Medicine professor of biomedical sciences Patrick O’Connor; Matt Lamanna, associate curator of vertebrate paleontology at Carnegie Museum of Natural History; Sanaa El-Sayed, a doctoral student at the University of Michigan and the MUVP’s former vice director; Hesham Sallam, a professor at the American University in Cairo (AUC) and Mansoura University and the founding director of the MUVP; and additional colleagues from Benha University and the Egyptian Environmental Affairs Agency.

The fossil in question, a well-preserved vertebra from the base of the neck, was recovered by a 2016 MUVP expedition to the Bahariya Oasis. The vertebra belongs to an abelisaurid, a kind of bulldog-faced, small-toothed, tiny-armed theropod that is estimated to have been roughly six meters (20 feet) in body length. Abelisaurids — most notably represented by the horned, demonic-looking Patagonian form Carnotaurus of Jurassic World and Prehistoric Planet fame — were among the most diverse and geographically widespread large predatory dinosaurs in the southern landmasses during the Cretaceous Period, the final time period of the Age of Dinosaurs. Along with Spinosaurus and two other giant theropods (Carcharodontosaurus and Bahariasaurus), the new abelisaurid fossil adds yet another species to the cadre of large predatory dinosaurs that roamed what is now the Egyptian Sahara roughly 98 million years ago.

“During the mid-Cretaceous, the Bahariya Oasis would’ve been one of the most terrifying places on the planet,” says Salem, a new student in the biological sciences graduate program at Ohio University. “How all these huge predators managed to coexist remains a mystery, though it’s probably related to their having eaten different things, their having adapted to hunt different prey.”

The new vertebra holds implications for the biodiversity of Cretaceous dinosaurs in Egypt and the entire northern region of Africa. It is the oldest known fossil of Abelisauridae from northeastern Africa, and shows that, during the mid-Cretaceous, these carnivorous dinosaurs ranged across much of the northern part of the continent, east to west from present day Egypt to Morocco, to as far south as Niger and potentially beyond. Spinosaurus and Carcharodontosaurus are also known from Niger and Morocco, and a close relative of Bahariasaurus has been found in the latter nation as well, suggesting that this fauna of large to gigantic theropods coexisted throughout much of northern Africa at this time.

How can the discovery of a single neck vertebra lead researchers to conclude that the fossil belongs to a member of Abelisauridae, a kind of carnivorous dinosaur that has never been found in the Bahariya Formation before? The answer is remarkably simple: it is virtually identical to the same bone in other, better-known abelisaurids such as Carnotaurus from Argentina and Majungasaurus from Madagascar. As coauthor and Salem’s graduate advisor Patrick O’Connor, who in 2007 published an exhaustive study of the vertebral anatomy of Majungasaurus,explains, “I’ve examined abelisaur skeletons from Patagonia to Madagascar. My first glimpse of this specimen from photos left no doubt about its identity. Abelisaurid neck bones are so distinctive.”

The Site

The Bahariya Oasis is renowned within paleontological circles for having yielded the type specimens (the original, first-discovered, name-bearing fossils) of several extraordinary dinosaurs during the early 20th century, including, most famously, Spinosaurus. Unfortunately, all Bahariya dinosaur fossils collected prior to World War II were destroyed during an Allied bombing of Munich in 1944.

As a graduate student in the early 2000s, study coauthor Matt Lamanna helped make the first dinosaur discoveries from the oasis since the infamous 1944 air raid, including the gargantuan sauropod (long-necked plant-eating dinosaur) Paralititan. “The Bahariya Oasis has taken on near-legendary status among paleontologists for having produced the first-known fossils of some of the world’s most amazing dinosaurs,” says Lamanna, “but for more than three quarters of a century, those fossils have existed only as pictures in old books.” Thankfully, discoveries made during recent expeditions led by researchers from AUC and MUVP — such as the new abelisaurid vertebra — are helping to restore the paleontological legacy of this classic site. These expeditions have recovered a wealth of additional fossils that the researchers plan to unveil in the near future.

As team member Sanaa El-Sayed, who co-led the 2016 expedition that collected the abelisaurid vertebra, explains, “This bone is just the first of many important new dinosaur fossils from the Bahariya Oasis.”

The Bahariya Formation holds promise to shed further light on mid-Cretaceous African dinosaurs and the vanished ecosystems in which they once lived. Unlike more thoroughly explored rocks of the same age in Morocco that tend to yield isolated bones, the Bahariya Formation appears to preserve partial skeletons of dinosaurs and other land-living animals with a relatively high degree of frequency. The more bones that are preserved within the skeleton of a given fossil backboned species, the more paleontologists can generally learn about it. The propensity of the Bahariya Oasis for producing associated partial skeletons suggests that much remains to be learned from this historic locality.

“In terms of Egyptian dinosaurs, we’ve really just scratched the surface,” notes study coauthor Hesham Sallam. “Who knows what else might be out there?” Recent efforts by Professor Sallam and his collaborators from around the planet are putting students from Egypt in lead roles in the research process. Both the field expedition that recovered the new abelisaurid fossil and the follow-up laboratory work were led by MUVP-based student researchers and contributing authors on the paper. “Working with MUVP and its faculty and students, like Belal Salem, continues to inspire me, as I see the next generation of paleontologists taking a prominent role in sharing their views on the history of our planet,” adds O’Connor.

Research on the new abelisaurid vertebra was supported by a field research grant to Matt Lamanna from the National Geographic Society’s Committee for Research and Exploration, grants to Hesham Sallam from Mansoura University and the American University in Cairo intramural grant program, and a grant to Patrick O’Connor from the National Science Foundation (EAR-1525915).

Reference:
Belal S. Salem, Matthew C. Lamanna, Patrick M. O’Connor, Gamal M. El-Qot, Fatma Shaker, Wael A. Thabet, Sanaa El-Sayed, Hesham M. Sallam. First definitive record of Abelisauridae (Theropoda: Ceratosauria) from the Cretaceous Bahariya Formation, Bahariya Oasis, Western Desert of Egypt. Royal Society Open Science, 2022; 9 (6) DOI: 10.1098/rsos.220106

Note: The above post is reprinted from materials provided by Ohio University.

Hot-blooded T. rex and cold-blooded Stegosaurus: Chemical clues reveal dinosaur metabolisms

Hot-blooded T. rex and cold-blooded Stegosaurus
Hot-blooded T. rex and cold-blooded Stegosaurus

For decades, paleontologists have debated whether dinosaurs were warm-blooded, like modern mammals and birds, or cold-blooded, like modern reptiles. Knowing whether dinosaurs were warm- or cold-blooded could give us hints about how active they were and what their everyday lives were like, but the methods to determine their warm- or cold-bloodedness — how quickly their metabolisms could turn oxygen into energy — were inconclusive. But in a new paper in Nature, scientists are unveiling a new method for studying dinosaurs’ metabolic rates, using clues in their bones that indicated how much the individual animals breathed in their last hour of life.

“This is really exciting for us as paleontologists — the question of whether dinosaurs were warm- or cold-blooded is one of the oldest questions in paleontology, and now we think we have a consensus, that most dinosaurs were warm-blooded,” says Jasmina Wiemann, the paper’s lead author and a postdoctoral researcher at the California Institute of Technology.

“The new proxy developed by Jasmina Wiemann allows us to directly infer metabolism in extinct organisms, something that we were only dreaming about just a few years ago. We also found different metabolic rates characterizing different groups, which was previously suggested based on other methods, but never directly tested,” says Matteo Fabbri, a postdoctoral researcher at the Field Museum in Chicago and one of the study’s authors.

People sometimes talk about metabolism in terms of how easy it is for someone to stay in shape, but at its core, “metabolism is how effectively we convert the oxygen that we breathe into chemical energy that fuels our body,” says Wiemann, who is affiliated with Yale University and the Natural History Museum of Los Angeles County.

Animals with a high metabolic rate are endothermic, or warm-blooded; warm-blooded animals like birds and mammals take in lots of oxygen and have to burn a lot of calories in order to maintain their body temperature and stay active. Cold-blooded, or ectothermic, animals like reptiles breathe less and eat less. Their lifestyle is less energetically expensive than a hot-blooded animal’s, but it comes at a price: cold-blooded animals are reliant on the outside world to keep their bodies at the right temperature to function (like a lizard basking in the sun), and they tend to be less active than warm-blooded creatures.

With birds being warm-blooded and reptiles being cold-blooded, dinosaurs were caught in the middle of a debate. Birds are the only dinosaurs that survived the mass extinction at the end of the Cretaceous, but dinosaurs (and by extension, birds) are technically reptiles — outside of birds, their closest living relatives are crocodiles and alligators. So would that make dinosaurs warm-blooded, or cold-blooded?

Scientists have tried to glean dinosaurs’ metabolic rates from chemical and osteohistological analyses of their bones. “In the past, people have looked at dinosaur bones with isotope geochemistry that basically works like a paleo-thermometer,” says Wiemann — researchers examine the minerals in a fossil and determine what temperatures those minerals would form in. “It’s a really cool approach and it was really revolutionary when it came out, and it continues to provide very exciting insights into the physiology of extinct animals. But we’ve realized that we don’t really understand yet how fossilization processes change the isotope signals that we pick up, so it is hard to unambiguously compare the data from fossils to modern animals.”

Another method for studying metabolism is growth rate. “If you look at a cross section of dinosaur bone tissue, you can see a series of lines, like tree rings, that correspond to years of growth,” says Fabbri. “You can count the lines of growth and the space between them to see how fast the dinosaur grew. The limit relies on how you transform growth rate estimates into metabolism: growing faster or slower can have more to do with the animal’s stage in life than with its metabolism, like how we grow faster when we’re young and slower when we’re older.”

The new method proposed by Wiemann, Fabbri, and their colleagues doesn’t look at the minerals present in bone or how quickly the dinosaur grew. Instead, they look at one of the most basic hallmarks of metabolism: oxygen use. When animals breathe, side products form that react with proteins, sugars, and lipids, leaving behind molecular “waste.” This waste is extremely stable and water-insoluble, so it’s preserved during the fossilization process. It leaves behind a record of how much oxygen a dinosaur was breathing in, and thus, its metabolic rate.

The researchers looked for these bits of molecular waste in dark-colored fossil femurs, because those dark colors indicate that lots of organic matter are preserved. They examined the fossils using Raman and Fourier-transform infrared spectroscopy — “these methods work like laser microscopes, we can basically quantify the abundance of these molecular markers that tell us about the metabolic rate,” says Wiemann. “It is a particularly attractive method to paleontologists, because it is non-destructive.”

The team analyzed the femurs of 55 different groups of animals, including dinosaurs, their flying cousins the pterosaurs, their more distant marine relatives the plesiosaurs, and modern birds, mammals, and lizards. They compared the amount of breathing-related molecular byproducts with the known metabolic rates of the living animals and used those data to infer the metabolic rates of the extinct ones.

The team found that dinosaurs’ metabolic rates were generally high. There are two big groups of dinosaurs, the saurischians and the ornithischians — lizard hips and bird hips. The bird-hipped dinosaurs, like Triceratops and Stegosaurus, had low metabolic rates comparable to those of cold-blooded modern animals. The lizard-hipped dinosaurs, including theropods and the sauropods — the two-legged, more bird-like predatory dinosaurs like Velociraptor and T. rex and the giant, long-necked herbivores like Brachiosaurus — were warm- or even hot-blooded. The researchers were surprised to find that some of these dinosaurs weren’t just warm-blooded — they had metabolic rates comparable to modern birds, much higher than mammals. These results complement previous independent observations that hinted at such trends but could not provide direct evidence, because of the lack of a direct proxy to infer metabolism.

These findings, the researchers say, can give us fundamentally new insights into what dinosaurs’ lives were like.

“Dinosaurs with lower metabolic rates would have been, to some extent, dependent on external temperatures,” says Wiemann. “Lizards and turtles sit in the sun and bask, and we may have to consider similar ‘behavioral’ thermoregulation in ornithischians with exceptionally low metabolic rates. Cold-blooded dinosaurs also might have had to migrate to warmer climates during the cold season, and climate may have been a selective factor for where some of these dinosaurs could live.”

On the other hand, she says, the hot-blooded dinosaurs would have been more active and would have needed to eat a lot. “The hot-blooded giant sauropods were herbivores, and it would take a lot of plant matter to feed this metabolic system. They had very efficient digestive systems, and since they were so big, it probably was more of a problem for them to cool down than to heat up.” Meanwhile, the theropod dinosaurs — the group that contains birds — developed high metabolisms even before some of their members evolved flight.

“Reconstructing the biology and physiology of extinct animals is one of the hardest things to do in paleontology. This new study adds a fundamental piece of the puzzle in understanding the evolution of physiology in deep time and complements previous proxies used to investigate these questions. We can now infer body temperature through isotopes, growth strategies through osteohistology, and metabolic rates through chemical proxies,” says Fabbri.

In addition to giving us insights into what dinosaurs were like, this study also helps us better understand the world around us today. Dinosaurs, with the exception of birds, died out in a mass extinction 65 million years ago when an asteroid struck the Earth. “Having a high metabolic rate has generally been suggested as one of the key advantages when it comes to surviving mass extinctions and successfully radiating afterwards,” says Wiemann — some scientists have proposed that birds survived while the non-avian dinosaurs died because of the birds’ increased metabolic capacity. But this study, Wiemann says, helps to show that this isn’t true: many dinosaurs with bird-like, exceptional metabolic capacities went extinct.

“We are living in the sixth mass extinction,” says Wiemann, “so it is important for us to understand how modern and extinct animals physiologically responded to previous climate change and environmental perturbations, so that the past can inform biodiversity conservation in the present and inform our future actions.”

Reference:
Jasmina Wiemann, Iris Menéndez, Jason M. Crawford, Matteo Fabbri, Jacques A. Gauthier, Pincelli M. Hull, Mark A. Norell, Derek E. G. Briggs. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature, 2022; DOI: 10.1038/s41586-022-04770-6

Note: The above post is reprinted from materials provided by Field Museum.

Seismic waves from earthquakes reveal changes in the Earth’s outer core

The blue path illustrates a core-penetrating seismic wave moving through a region in the outer core, where the seismic speed has increased because a low-density flow has moved into the region. Credit: Ying Zhou
The blue path illustrates a core-penetrating seismic wave moving through a region in the outer core, where the seismic speed has increased because a low-density flow has moved into the region. Credit: Ying Zhou

In May 1997, a large earthquake shook the Kermadec Islands region in the South Pacific Ocean. A little over 20 years later, in September 2018, a second big earthquake hit the same location, its waves of seismic energy emanating from the same region.

Though the earthquakes occurred two decades apart, because they occurred in the same region, they’d be expected to send seismic waves through the Earth’s layers at the same speed, said Ying Zhou, a geoscientist with the Department of Geosciences in the Virginia Tech College of Science.

But in data recorded at four of more than 150 Global Seismographic Network stations that log seismic vibrations in real time, Zhou found an anomaly among the twin events: During the 2018 earthquake, a set of seismic waves known as SKS waves traveled about one second faster than their counterparts had in 1997.

According to Zhou, whose findings were recently published in Communications Earth & Environment, that one-second discrepancy in SKS wave travel time gives us an important and unprecedented glimpse of what’s happening deeper in the Earth’s interior, in its outer core.

What’s inside counts

The outer core is sandwiched between the mantle, the thick layer of rock underneath the Earth’s crust, and the inner core, the planet’s deepest interior layer. It’s composed mainly of liquid iron that undergoes convection, or fluid flow, as the Earth cools. This resulting swirling of liquid metal produces electrical currents responsible for generating the Earth’s magnetic field, which protects the planet and all life on it from harmful radiation and solar winds.

Without its magnetic field, the Earth could not sustain life, and without the moving flows of liquid metal in the outer core, the magnetic field wouldn’t work. But scientific understanding of this dynamic is based on simulations, said Zhou, an associate professor. “We only know that in theory, if you have convection in the outer core, you’ll be able to generate the magnetic field,” she said.

Scientists also have only been able to speculate about the source of gradual changes in strength and direction of the magnetic field that have been observed, which likely involves changing flows in the outer core.

“If you look at the north geomagnetic pole, it’s currently moving at a speed of about 50 kilometers [31 miles] per year,” Zhou said. “It’s moving away from Canada and toward Siberia. The magnetic field is not the same every day. It’s changing. Since it’s changing, we also speculate that convection in the outer core is changing with time, but there’s no direct evidence. We’ve never seen it.”

Zhou set out to find that evidence. The changes happening in the outer core aren’t dramatic, she said, but they’re worth confirming and fundamentally understanding. In seismic waves and their changes in speed on a decade time scale, Zhou saw a means for “direct sampling” of the outer core. That’s because the SKS waves she studied pass right through it.

“SKS” represents three phases of the wave: First it goes through the mantle as an S wave, or shear wave; then into the outer core as a compressional wave; then back out through the mantle as an S wave. How fast these waves travel depend in part on the density of the outer core that’s in their path. If the density is lower in a region of the outer core as the wave penetrates it, the wave will travel faster, just as the anomalous SKS waves did in 2018.

“Something has changed along the path of that wave, so it can go faster now,” Zhou said.

To Zhou, the difference in wave speed points to low-density regions forming in the outer core in the 20 years since the 1997 earthquake. That higher SKS wave speed during the 2018 earthquake can be attributed to the release of light elements such as hydrogen, carbon, and oxygen in the outer core during convection that takes place as the Earth cools, she said.

“The material that was there 20 years ago is no longer there,” Zhou said. “This is new material, and it’s lighter. These light elements will move upward and change the density in the region where they’re located.”

To Zhou, it’s evidence that movement really is happening in the core, and it’s changing over time, as scientists have theorized. “We’re able to see it now,” she said. “If we’re able to see it from seismic waves, in the future, we could set up seismic stations and monitor that flow.”

What’s next

That’s Zhou’s next effort. Using a method of wave measurement known as interferometry, her team plans to analyze continuous seismic recordings from two seismic stations, one of which will serve as a “virtual” earthquake source, she said.

“We can use earthquakes, but the limitation of relying on earthquake data is that we can’t really control the locations of the earthquakes,” Zhou said. “But we can control the locations of seismic stations. We can put the stations anywhere we want them to be, with the wave path from one station to the other station going through the outer core. If we monitor that over time, then we can see how core-penetrating seismic waves between those two stations change. With that, we will be better able to see the movement of fluid in the outer core with time.”

Note: The above post is reprinted from materials provided by Virginia Tech.

How plesiosaurs swam underwater

Representative Image: Plesiosaur attack, artwork.

Plesiosaurs, which lived about 210 million years ago, adapted to life underwater in a unique way: their front and hind legs evolved in the course of evolution to form four uniform, wing-like flippers. In her thesis supervised at Ruhr-Universität Bochum and the University of Bonn, Dr. Anna Krahl investigated how they used these to move through the water. Partly by using the finite element method, which is widely used in engineering, she was able to show that it was necessary to twist the flippers in order to travel forward. She was able to reconstruct the movement sequence using bones, models and reconstructions of the muscles.

Plesiosaurs belong to a group of saurians called Sauropterygia, or paddle lizards, that re-adapted to living in the oceans. They evolved in the late Triassic 210 million years ago, lived at the same time as the dinosaurs, and became extinct at the end of the Cretaceous period. Plesiosaurs are characterized by an often extremely elongated neck with a small head — the elasmosaurs even have the longest neck of all vertebrates. But there were also large predatory forms with a rather short neck and huge skulls. In all plesiosaurs, the neck is attached to a teardrop-shaped, hydrodynamically well adapted body with a markedly shortened tail.

Researchers have puzzled for 120 years how plesiosaurs swam

The second feature that makes plesiosaurs so unusual are their four uniform wing-like flippers. “Having the front legs transformed into wing-like flippers is relatively common in evolution, for instance in sea turtles. Never again, however, did the hind legs evolve into an almost identical-looking airfoil-like wing,” explains Anna Krahl, whose doctoral thesis was supervised by Professor P. Martin Sander (Bonn) and Professor Ulrich Witzel (Bochum). Sea turtles and penguins, for example, have webbed feet. For more than 120 years, researchers in vertebrate paleontology have puzzled over how plesiosaurs might have swum with these four wings. Did they row like freshwater turtles or ducks? Did they fly underwater like sea turtles and penguins? Or did they combine underwater flight and rowing like modern-day sea lions or the pig-nosed turtle? It is also unclear whether the front and rear flippers were flapped in unison, in opposition, or out of phase.

Anna Krahl has been studying the body structure of plesiosaurs for several years. She examined the bones of the shoulder and pelvic girdle, the front and hind flippers, and the shoulder joint surfaces of the plesiosaur Cryptoclidus eurymerus from the Middle Jurassic period (about 160 million years ago) on a complete skeleton displayed in the Goldfuß Museum of the University of Bonn. Plesiosaurs have stiffened elbow, knee, hand, and ankle joints, but functioning shoulder, hip, and finger joints. “Analysis comparing them to modern-day sea turtles, and based on what is known about their swimming process, indicated that plesiosaurs were probably not able to rotate their flippers as much as would be necessary for rowing,” concludes Krahl, summarizing one of her preliminary papers. Rowing is primarily a back-and-forth motion that uses water resistance to move forward. The preferred direction of flipper movement in plesiosaurs, on the other hand, was up-and-down, as used by underwater fliers to generate propulsion.

The question remained how plesiosaurs could ultimately twist their flippers to place them in a hydrodynamically favorable position and produce lift without rotating the upper arm and thigh around the longitudinal axis. “This could work by means of twisting the flippers around their long axis,” says Anna Krahl. “Other vertebrates, such as the leatherback turtle, have also been shown to use this movement to generate propulsion through lift.” Twisting, for example, involves bending the first finger far downward and the last finger far upward. The remaining fingers bridge these extreme positions so that the flipper tip is almost vertical without requiring any real rotation in the shoulder or wrist.

A reconstruction of the muscles of the fore- and hind flippers for Cryptoclidus using reptiles alive today showed that plesiosaurs could actively enable such flipper twisting. In addition to classical models, the researchers also made computer tomographies of the humerus and femur of Cryptoclidus and used them to create virtual 3D models. “These digital models were the basis for calculating the forces using a method we borrowed from engineering: the finite element method, or FE,” explains Anna Krahl. All the muscles and their angles of attachment on the humerus and femur were virtually reproduced in an FE computer program that can simulate physiological functional loads, for example on construction components but also on prostheses. Based on muscle force assumptions from a similar study on sea turtles, the team was able to calculate and visualize the loading on each bone.

Twisting of the flippers can be proven indirectly

During a movement cycle, the limb bones are loaded by compression, tension, bending and torsion. “The FE analyses showed that the humerus and femur in the flippers are functionally loaded mainly by compression and to a much lesser extent by tensile stress,” Anna Krahl explains. “This means that the plesiosaur built its bones by using as little material as necessary.” This natural state can only be maintained if the muscles that twist the flippers and the muscles that wrap around the bone are included. “We can therefore indirectly prove that plesiosaurs twisted their flippers in order to swim efficiently,” Anna Krahl sums up.

The team was also able to calculate forces for the individual muscles that generated the upstroke and downstroke. For instance, it transpired that the downstroke of both pairs of flippers was more powerful than the upstroke. This is comparable to our sea turtles today and different from today’s penguins, which move forward the same distance with the upstroke as with the downstroke. “Plesiosaurs adapted to life in water in a very different way than whales, for example,” notes Anna Krahl, who now works at the Eberhard Karls University in Tübingen, Germany. “This unique path of evolution exemplifies the importance of paleontological research because it’s the only way we can appreciate the full range of what evolution can bring about.”

Reference:
Anna Krahl, Andreas Lipphaus, P. Martin Sander, Ulrich Witzel. Determination of muscle strength and function in plesiosaur limbs: finite element structural analyses of Cryptoclidus eurymerus humerus and femur. PeerJ, 2022; 10: e13342 DOI: 10.7717/peerj.13342

Note: The above post is reprinted from materials provided by Ruhr-University Bochum. Original written by Meike Drießen.

First Australians ate giant eggs of huge flightless birds, ancient proteins confirm

  Genyornis eggshell recently exposed by wind erosion of sand dune in which it was buried, South Australia. Credit: Gifford Miller
Genyornis eggshell recently exposed by wind erosion of sand dune in which it was buried, South Australia. Credit: Gifford Miller

Proteins extracted from fragments of prehistoric eggshell found in the Australian sands confirm that the continent’s earliest humans consumed the eggs of a two-metre tall bird that disappeared into extinction over 47,000 years ago.

Burn marks discovered on scraps of ancient shell several years ago suggested the first Australians cooked and ate large eggs from a long-extinct bird – leading to fierce debate over the species that laid them.

Now, an international team led by scientists from the universities of Cambridge and Turin have placed the animal on the evolutionary tree by comparing the protein sequences from powdered egg fossils to those encoded in the genomes of living avian species.

“Time, temperature and the chemistry of a fossil all dictate how much information we can glean,” said senior co-author Prof Matthew Collins from the University of Cambridge’s Department of Archaeology.

“Eggshells are made of mineral crystals that can tightly trap some proteins, preserving this biological data in the harshest of environments – potentially for millions of years.”

According to findings published in the journal Proceedings of the National Academy of Sciences, the ancient eggs came from Genyornis: a huge flightless “mihirung” – or ‘Thunder Bird’ – with tiny wings and massive legs that roamed prehistoric Australia, possibly in flocks.

Fossil records show that Genyornis stood over two metres tall, weighed between 220-240 kilograms, and laid melon-sized eggs of around 1.5 kg. It was among the Australian “mega-fauna” to vanish a few thousand years after humans arrived, suggesting people played a role in its extinction.

The earliest “robust” date for the arrival of humans to Australia is some 65,000 years ago. Burnt eggshells from the previously unconfirmed species all date to around 50 to 55 thousand years ago – not long before Genyornis is thought to have gone extinct – by which time humans had spread across most of the continent.

“There is no evidence of Genyornis butchery in the archaeological record. However, eggshell fragments with unique burn patterns consistent with human activity have been found at different places across the continent,” said senior co-author Prof Gifford Miller from the University of Colorado.

“This implies that the first humans did not necessarily hunt these enormous birds, but did routinely raid nests and steal their giant eggs for food,” he said. “Overexploitation of the eggs by humans may well have contributed to Genyornis extinction.”

While Genyornis was always a contender for the mystery egg-layer, some scientists argued that – due to shell shape and thickness – a more likely candidate was the Progura or ‘giant malleefowl’: another extinct bird, much smaller, weighing around 5-7 kg and akin to a large turkey.

The initial ambition was to put the debate to bed by pulling ancient DNA from pieces of shell, but genetic material had not sufficiently survived the hot Australian climate.

Miller turned to researchers at Cambridge and Turin to explore a relatively new technique for extracting a different type of “biomolecule”: protein.

While not as rich in hereditary data, the scientists were able to compare the sequences in ancient proteins to those of living species using a vast new database of biological material: the Bird 10,000 Genomes (B10K) project.

“The Progura was related to today’s megapodes, a group of birds in the galliform lineage, which also contains ground-feeders such as chickens and turkeys,” said study first author Prof Beatrice Demarchi from the University of Turin.

“We found that the bird responsible for the mystery eggs emerged prior to the galliform lineage, enabling us to rule out the Progura hypothesis. This supports the implication that the eggs eaten by early Australians were laid by Genyornis.”

The 50,000-year-old eggshell tested for the study came from the archaeological site of Wood Point in South Australia, but Prof Miller has previously shown that similar burnt shells can be found at hundreds of sites on the far western Ningaloo coast.

The researchers point out that the Genyornis egg exploitation behaviour of the first Australians likely mirrors that of early humans with ostrich eggs, the shells of which have been unearthed at archaeological sites across Africa dating back at least 100,000 years.

Prof Collins added: “While ostriches and humans have co-existed throughout prehistory, the levels of exploitation of Genyornis eggs by early Australians may have ultimately proved more than the reproductive strategies of these extraordinary birds could bear.”

Reference:
Beatrice Demarchi, Josefin Stiller, Alicia Grealy, Meaghan Mackie, Yuan Deng, Tom Gilbert, Julia Clarke, Lucas J. Legendre, Rosa Boano, Thomas Sicheritz-Pontén, John Magee, Guojie Zhang, Michael Bunce, Matthew James Collins, Gifford Miller. Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proceedings of the National Academy of Sciences, 2022; DOI: 10.1073/pnas.2109326119

Note: The above post is reprinted from materials provided by University of Cambridge. Original written by Fred Lewsey.

Great white sharks may have contributed to megalodon extinction

 Tooth size comparison between extinct Early Pliocene Otodus megalodon tooth and a modern great white shark. © MPI for Evolutionary Anthropology

Tooth size comparison between extinct Early Pliocene Otodus megalodon tooth and a modern great white shark.
© MPI for Evolutionary Anthropology

The diet of fossil extinct animals can hold clues to their lifestyle, behaviour, evolution and ultimately extinction. However, studying an animal’s diet after millions of years is difficult due to the poor preservation of chemical dietary indicators in organic material on these timescales. An international team of scientists led by the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, applied a new method to investigate the diet of the largest shark to have ever existed, the iconic Otodus megalodon. This new method investigates the zinc isotope composition of the highly mineralised part of teeth and proves to be particularly helpful to decipher the diet of these extinct animals.

Megatooth sharks like, Otodus megalodon, more commonly known as megalodon, lived between 23 and 3.6 million years ago in oceans around the globe and possibly reached as large as 20 metres in length. For comparison, the largest great white sharks today reach a total length of only six metres. Many factors have been discussed to explain the gigantism and extinction of megalodon, with its diet and dietary competition often being thought of as key factors.

In this study, researchers analysed zinc stable isotope ratios in modern and fossil shark teeth from around the globe, including teeth of megalodon and modern and fossil great white sharks. This new method allows scientists to investigate an animal’s trophic level, which indicates how far up the food chain an animal feeds. Zinc stable isotope analysis of tooth enameloid, the highly mineralised part of teeth, is comparable to much more established nitrogen isotope analysis of tooth collagen, the organic tissue in tooth dentine, which is used to assess the degree of animal matter consumption. However, “on the timescales we investigate, collagen is not preserved, and traditional nitrogen isotope analysis is therefore not possible,” explains lead author Jeremy McCormack, a researcher at the Max Planck Institute for Evolutionary Anthropology and the Goethe-University Frankfurt. “Here, we demonstrate, for the first time, that diet-related zinc isotope signatures are preserved in the highly mineralised enameloid crown of fossil shark teeth,” adds Thomas Tütken, professor at the Johannes Gutenberg University’s Institute of Geosciences.

Comparison of zinc isotope signals in fossil and modern sharks

Using this new method, the team compared the tooth zinc isotope signature of multiple extinct Early Miocene (20.4 to 16.0 million years ago) and Early Pliocene (5.3 to 3.6 million years ago) species with those of modern sharks. “We noticed a coherence of zinc isotope signals in fossil and modern analogue taxa, which boosts our confidence in the method and suggests that there may be minimal differences in zinc isotope values at the base of marine food webs, a confounding factor for nitrogen isotope studies,” explains Sora Kim, a professor from the University of California Merced.

Subsequently, the researchers analysed the zinc isotope ratios in megalodon teeth from the Early Pliocene and those in earlier megatooth sharks, Otodus chubutensis, from the Early Miocene as well as contemporaneous and modern great white sharks to investigate the impact these iconic species had on past ecosystems and each other. “Our results show, that both megalodon and its ancestor were indeed apex predators, feeding high up their respective food chains,” says Michael Griffiths, professor at the William Paterson University. “But what was truly remarkable is that zinc isotope values from Early Pliocene shark teeth from North Carolina, suggest largely overlapping trophic levels of early great white sharks with the much larger megalodon.”

Dietary competition of megalodon with great white sharks

“These results likely imply at least some overlap in prey hunted by both shark species,” notes Kenshu Shimada, professor at DePaul University, Chicago. “While additional research is needed, our results appear to support the possibility for dietary competition of megalodon with Early Pliocene great white sharks.”

New isotope methods such as zinc provide a unique window into the past. “Our research illustrates the feasibility of using zinc isotopes to investigate the diet and trophic ecology of extinct animals over millions of years, a method that can also be applied to other groups of fossil animals including our own ancestors,” concludes McCormack.

Reference:
Jeremy McCormack, Michael L. Griffiths, Sora L. Kim, Kenshu Shimada, Molly Karnes, Harry Maisch, Sarah Pederzani, Nicolas Bourgon, Klervia Jaouen, Martin A. Becker, Niels Jöns, Guy Sisma-Ventura, Nicolas Straube, Jürgen Pollerspöck, Jean-Jacques Hublin, Robert A. Eagle, Thomas Tütken. Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-30528-9

Note: The above post is reprinted from materials provided by Max Planck Institute for Evolutionary Anthropology.

Earth’s core: Unexpected flow behavior in liquid metals

Earth
Credit: Naeblys

Some metals are in liquid form, the prime example being mercury. But there are also enormous quantities of liquid metal in the Earth’s core, where temperatures are so high that part of the iron is molten and undergoes complex flows. A team at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has now simulated a similar process in the laboratory and made a surprising discovery: Under certain circumstances, the flow of liquid metal is far more turbulent than expected — and this has a significant impact on heat transport, presents the group in the journal Physical Review Letters.

Temperatures deep inside the Earth are so high that part of its iron core is liquid. This liquid iron is in constant motion, continuously churning and circulating. It acts like a dynamo, causing our planet’s magnetic field to be generated. One driving force for this complex flow behavior of iron is the Earth’s rotation, another is what is referred to as “convection,” driven by temperature differences: Similar to the way warm air rises above a radiator, where it displaces cooler air, relatively hot iron in the Earth’s core flows to cooler areas, resulting in heat transfer. As yet, however, little is known about how these processes take place in detail. To better understand them, experts have to rely on theoretical calculations and computer simulations, as well as experiments that simulate what is happening — at least to some extent — on a laboratory scale.

One such experiment was conducted recently at the HZDR’s Institute of Fluid Dynamics. “We took two cylindrical vessels — a relatively small one about the size of a bucket and the other one shaped like a barrel with a volume of 60 liters,” explained project leader Dr. Tobias Vogt. “We filled these vessels with a metallic alloy of indium, gallium and tin, which is liquid at room temperature.” The experts heated the bottom of the vessels whilst cooling the top, creating a temperature difference of up to 50 degrees Celsius between the higher and lower layers.

Ultrasound provides in-depth view

This substantial temperature difference caused the liquid metal inside the vessels to churn: Driven by convection, locally warmer flow areas such as columns rose and mixed with the cooler parts — similar to a lava lamp. Since the metal alloy used by the team is opaque, however, they had to resort to a special analytical technique: “It is an ultrasound method used in medicine,” explained Dr. Sven Eckert, Head of Department Magnetohydrodynamics at the HZDR. “We fitted around 20 ultrasonic sensors to the vessels, enabling us to detect how liquid metal flows inside them.”

When analyzing the data, the research group made a surprising discovery. During the experiments, the experts had expected to find the clustering of individual flow areas to form a greater, more extensive structure, known as large-scale circulation. “This is comparable to a thermal wind, which is able to transport heat very effectively between the top and the bottom,” reported Vogt. “We were indeed able to observe this thermal wind in the smaller vessel — but with the larger vessel, the barrel, large temperature differences led to an almost complete breakdown of the wind.” This meant that heat was not transported as effectively as would have been expected. “We believe the cause of this to be the formation of much smaller-scale turbulence rather than a few large swirls, which makes heat transport less effective,” stated Vogt.

Implications for battery technology

These new findings could have implications for what happens in the Earth’s core: “To understand what is happening, experts are attempting to extrapolate the results of laboratory experiments to the scale of the Earth,” explained Sven Eckert. “But we have now shown that heat is transported less effectively under certain conditions than previous experiments had suggested.” This means that predictions for the Earth will likely also produce different values. “However, the real-life processes in the Earth’s core are many times more complex than in our laboratory experiments,” Tobias Vogt added. “For example, the flow of liquid iron is also influenced by the Earth’s magnetic field and rotation — ultimately, we know very little about these flow processes.”

In fact, the new findings could also prove relevant for technology, especially in areas involving liquid metals. For example, liquid metals are used in some types of batteries as well as for future solar power plants, and cool fusion reactors. To be able to take an even closer look at heat transport in liquid metals, the HZDR team are currently working on an advanced analytical technique. “Special induction sensors are expected to record flows in even greater detail than before and produce true 3D images,” remarked Sven Eckert. “Our initial measurements are very promising.”

Reference:
Felix Schindler, Sven Eckert, Till Zürner, Jörg Schumacher, Tobias Vogt. Collapse of Coherent Large Scale Flow in Strongly Turbulent Liquid Metal Convection. Physical Review Letters, 2022; 128 (16) DOI: 10.1103/PhysRevLett.128.164501

Note: The above post is reprinted from materials provided by Helmholtz-Zentrum Dresden-Rossendorf.

Scientists have discovered a new type of fossilization

Middle: Microscopic plankton cell-wall coverings preserved as “ghost” fossil impressions, pressed into the surface of ancient organic matter (183 million years old). Th
Middle: Microscopic plankton cell-wall coverings preserved as “ghost” fossil impressions, pressed into the surface of ancient organic matter (183 million years old). The images show the impressions of a collapsed cell-wall covering (a coccosphere) on the surface of a fragment of ancient organic matter (left) with the individual plates (coccoliths) enlarged to show the exquisite preservation of sub-micron-scale structures (right). The blue image is inverted to give a virtual fossil cast, i.e., to show the original three-dimensional form. The original plates have been removed from the sediment by dissolution, leaving behind only the ghost imprints. S.M. Slater, P. Bown et al / Science journal

An international team of scientists from UCL (University College London), the Swedish Museum of Natural History, Natural History Museum (London) and the University of Florence have found a remarkable type of fossilisation that has remained almost entirely overlooked until now.

The fossils are microscopic imprints, or “ghosts,” of single-celled plankton, called coccolithophores, that lived in the seas millions of years ago, and their discovery is changing our understanding of how plankton in the oceans are affected by climate change.

Coccolithophores are important in today’s oceans, providing much of the oxygen we breathe, supporting marine food webs, and locking carbon away in seafloor sediments. They are a type of microscopic plankton that surround their cells with hard calcareous plates, called coccoliths, and these are what normally fossilize in rocks.

Declines in the abundance of these fossils have been documented from multiple past global warming events, suggesting that these plankton were severely affected by climate change and ocean acidification. However, a study published today in the journal Science presents new global records of abundant ghost fossils from three Jurassic and Cretaceous warming events (94, 120 and 183 million years ago), suggesting that coccolithophores were more resilient to past climate change than was previously thought.

“The discovery of these beautiful ghost fossils was completely unexpected,” says Dr. Sam Slater from the Swedish Museum of Natural History. “We initially found them preserved on the surfaces of fossilized pollen, and it quickly became apparent that they were abundant during intervals where normal coccolithophore fossils were rare or absent — this was a total surprise!”

Despite their microscopic size, coccolithophores can be hugely abundant in the present ocean, being visible from space as cloud-like blooms. After death, their calcareous exoskeletons sink to the seafloor, accumulating in vast numbers, forming rocks such as chalk.

“The preservation of these ghost nannofossils is truly remarkable,” says Professor Paul Bown (UCL). “The ghost fossils are extremely small — their length is approximately five thousandths of a millimetre, 15 times narrower than the width of a human hair — but the detail of the original plates is still perfectly visible, pressed into the surfaces of ancient organic matter, even though the plates themselves have dissolved away.”

The ghost fossils formed while the sediments at the seafloor were being buried and turned into rock. As more mud was gradually deposited on top, the resulting pressure squashed the coccolith plates and other organic remains together, and the hard coccoliths were pressed into the surfaces of pollen, spores and other soft organic matter. Later, acidic waters within spaces in the rock dissolved away the coccoliths, leaving behind just their impressions — the ghosts.

“Normally, palaeontologists only search for the fossil coccoliths themselves, and if they don’t find any then they often assume that these ancient plankton communities collapsed,” explains Professor Vivi Vajda (Swedish Museum of Natural History). “These ghost fossils show us that sometimes the fossil record plays tricks on us and there are other ways that these calcareous nannoplankton may be preserved, which need to be taken into account when trying to understand responses to past climate change.”

Professor Silvia Danise (University of Florence) says: “Ghost nannofossils are likely common in the fossil record, but they have been overlooked due to their tiny size and cryptic mode of preservation. We think that this peculiar type of fossilization will be useful in the future, particularly when studying geological intervals where the original coccoliths are missing from the fossil record.”

The study focused on the Toarcian Oceanic Anoxic Event (T-OAE), an interval of rapid global warming in the Early Jurassic (183 million years ago), caused by an increase in CO2-levels in the atmosphere from massive volcanism in the Southern Hemisphere. The researchers found ghost nannofossils associated with the T-OAE from the UK, Germany, Japan and New Zealand, but also from two similar global warming events in the Cretaceous: Oceanic Anoxic Event 1a (120 million years ago) from Sweden, and Oceanic Anoxic Event 2 (94 million years ago) from Italy.

“The ghost fossils show that nannoplankton were abundant, diverse and thriving during past warming events in the Jurassic and Cretaceous, where previous records have assumed that plankton collapsed due to ocean acidification,” explains Professor Richard Twitchett (Natural History Museum, London). “These fossils are rewriting our understanding of how the calcareous nannoplankton respond to warming events.”

Finally, Dr. Sam Slater explains: “Our study shows that algal plankton were abundant during these past warming events and contributed to the expansion of marine dead zones, where seafloor oxygen-levels were too low for most species to survive. These conditions, with plankton blooms and dead zones, may become more widespread across our globally warming oceans.”

Reference:
Sam M. Slater, Paul Bown, Richard J. Twitchett, Silvia Danise, Vivi Vajda. Global record of “ghost” nannofossils reveals plankton resilience to high CO 2 and warming. Science, 2022; 376 (6595): 853 DOI: 10.1126/science.abm7330

Note: The above post is reprinted from materials provided by University College London.

Puzzling features deep in Earth’s interior illuminated

Molten lava from a Hawaiian volcano. Image: Willyam/Adobe

Molten lava from a Hawaiian volcano. Image: Willyam/Adobe

New research led by the University of Cambridge is the first to take a detailed image of an unusual pocket of rock at the boundary layer with Earth’s core, some three thousand kilometres beneath the surface.

The enigmatic area of rock, which is located almost directly beneath the Hawaiian Islands, is one of several ultra-low velocity zones — so-called because earthquake waves slow to a crawl as they pass through them.

The research, published today in Nature Communications, is the first to reveal the complex internal variability of one of these pockets in detail, shedding light on the landscape of Earth’s deep interior and the processes operating within it.

“Of all Earth’s deep interior features, these are the most fascinating and complex. We’ve now got the first solid evidence to show their internal structure — it’s a real milestone in deep earth seismology,” said lead author Zhi Li, PhD student at Cambridge’s Department of Earth Sciences.

Earth’s interior is layered like an onion: at the centre sits the iron-nickel core, surrounded by a thick layer known as the mantle, and on top of that a thin outer shell — the crust we live on. Although the mantle is solid rock, it is hot enough to flow extremely slowly. These internal convection currents feed heat to the surface, driving the movement of tectonic plates and fuelling volcanic eruptions.

Scientists use seismic waves from earthquakes to see beneath Earth’s surface — the echoes and shadows of these waves revealing radar-like images of deep interior topography. But until recently, images of the structures at the core-mantle boundary, an area of key interest for studying our planet’s internal heat flow, have been grainy and difficult to interpret.

The researchers used the latest numerical modelling methods to reveal kilometre-scale structures at the core-mantle boundary. According to co-author Dr Kuangdai Leng, who developed the methods while at the University of Oxford, “We are really pushing the limits of modern high-performance computing for elastodynamic simulations, taking advantage of wave symmetries unnoticed or unused before.” Leng, who is currently based at the Science and Technology Facilities Council, said that this means they can improve the resolution of the images by an order of magnitude compared to previous work.

They observed a 40% reduction in the speed of seismic waves travelling at the base of the ultra-low velocity zone beneath Hawaii. According to the authors, this supports existing proposals that the zone contains much more iron than the surrounding rocks — meaning it is denser and more sluggish. “It’s possible that this iron-rich material is a remnant of ancient rocks from Earth’s early history or even that iron might be leaking from the core by an unknown means,” said project lead, Dr Sanne Cottaar from Cambridge Earth Sciences.

The new research could also help scientists understand what sits beneath and gives rise to volcanic chains like the Hawaiian Islands. Scientists have started to notice a correlation between the location of the descriptively-named hotspot volcanoes, which include Hawaii and Iceland, and the ultra-low velocity zones at the base of the mantle. The origin of hotspot volcanoes has been widely debated, but the most popular theory suggests that plume-like structures bring hot mantle material all the way from the core-mantle boundary to the surface.

With images of the ultra-low velocity zone beneath Hawaii now in hand, the team can also gather rare physical evidence from what is likely the root of the plume feeding Hawaii. Their observation of dense, iron-rich rock beneath Hawaii would support surface observations, “Basalts erupting from Hawaii have anomalous isotope signatures which could either point to either an early-Earth origin or core leaking, it means some of this dense material piled up at the base must be dragged to the surface,” said Cottaar.

More of the core-mantle boundary now needs to be imaged to understand if all surface hotspots have a pocket of dense material at the base. Where and how the core-mantle boundary can be targeted does depend on where earthquakes occur, and where seismometers are installed to record the waves.

The team’s observations add to a growing body of evidence that Earth’s deep interior is just as variable as it’s surface. “These low velocity zones are one of the most intricate features we see at extreme depths — if we expand our search we are likely to see ever-increasing levels of complexity, both structural and chemical, at the core-mantle boundary,” said Li.

They now plan to apply their techniques to enhance the resolution of imaging of other pockets at the core-mantle boundary, as well as mapping new zones. Eventually they hope to map the geological landscape across the core-mantle boundary and understand its relationship with the dynamics and evolutionary history of our planet.

Reference:
Zhi Li, Kuangdai Leng, Jennifer Jenkins, Sanne Cottaar. Kilometer-scale structure on the core–mantle boundary near Hawaii. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-30502-5

Note: The above post is reprinted from materials provided by University of Cambridge. The original text of this story is licensed under a Creative Commons License.

Which forces control the elevation of mountains?

 Puna Plateau (© Mitchall d'Arcy)
Puna Plateau (© Mitchall d’Arcy)

Scientists have come up with a new classification scheme for mountain belts that uses just a single number to describe whether the elevation of the mountain belt is controlled mainly by weathering and erosion or by properties of the Earth’s crust, i.e., the lithospheric strength: the “Beaumont number” (Bm). It’s named after Chris Beaumont, a scientist who, together with his team, developed coupled models of surface processes and tectonic forces. The scientists report about their findings in the current issue of Nature.

A Beaumont number between 0.4 and 0.5 means that the mountains are in a so-called flux steady state in which the controlling factors of mountain growth are tectonic forces and the lithospheric strength, balanced by weathering processes as, for example, in Taiwan. With a Bm value lower than 0.4, mountains are also in a flux steady state but with erosion as controlling factor like the Southern Alps of New Zealand. A Beaumont number above 0.5 means that the mountains still grow (non-steady state) with lithospheric strength controlling the process. Examples for this type are the Himalaya-Tibet mountains and the Central Andes.

This classification is resolving a long-standing question whether tectonic forces and strength of the Earth’s crust are the controlling factors of mountain elevation or weathering processes. The new study says it can be one or the other — depending on geographic location, climate and underground properties.

The team of scientists led by Sebastian G. Wolf of Bergen University in Norway used a new coupled surface process and mantle-scale tectonic model for their study by combining the thermomechanical tectonic model FANTOM with the landscape evolution model FastScape. Thus, they were able to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years.

Jean Braun of the GFZ German Research Centre for Geosciences, who co-authored the paper, says: “With our Beaumont number we can determine to which proportion tectonics, climate, and crustal strength control the height of mountain belts. And, for most mountain belts, this can be done without complex measurements or assumptions; all that is needed is a knowledge of the rate of convergence obtained from present-day plate velocities or plate reconstructions, the height of the mountain obtained from a topographic map and the widening rate obtained from the geological record. In a nutshell: Whether a mountain is short or tall is the product of slow or fast convergence, wet or dry climate, or strong or weak crust.” The Beaumont number shows which of these three factors is dominating.

Reference:
Sebastian G. Wolf, Ritske S. Huismans, Jean Braun, Xiaoping Yuan. Topography of mountain belts controlled by rheology and surface processes. Nature, 2022; DOI: 10.1038/s41586-022-04700-6

Note: The above post is reprinted from materials provided by GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre.

Arc volcanoes are wetter than previously thought, with scientific and economic implications

volcanoes
volcanoes

The percentage of water in arc volcanoes, which form above subduction zones, may be far more than many previous studies have calculated.

This increased amount of water has broad implications for understanding how Earth’s lower crust forms, how magma erupts through the crust, and how economically important mineral ore deposits form, according to a new paper led by authors from the Woods Hole Oceanographic Institution (WHOI), “High water content of arc magmas recorded in cumulates from subduction zone lower crust,” published in Nature Geoscience.

The estimated water concentrations in primitive arc magmas from this study are more variable and significantly higher than the average of about four weight percent of water found in other studies, according to the paper. The results show that primitive arc H2O after extensive crystal fractionation in the lower arc crust, the paper adds.

“The big picture here is that water is essentially the lubricant of plate tectonics. The water content is going to affect all sorts of different parameters involved in how tectonic plates move,” says lead author Benjamin Urann, who was a doctoral student in the Massachusetts Institute of Technology (MIT) — WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering at the time of the study.

“Being able to get some idea of what the actual water content of the arc magmas is, which is what we did in this study, can help refine estimates of how much water is being subducted deep into the mantle globally; quantify different water reservoirs on Earth, including surface and deep water reservoirs; and better understand the transport between these different reservoirs,” says Urann, who is currently a National Science Foundation Ocean Sciences Postdoctoral Research Fellow at the University of Wyoming. Urann added that the paper also discusses the implications of water content for forming economically important ore deposits, such as porphyry copper deposits. These deposits make up about 60% of the world’s source of copper, according to the U.S. Geological Survey.

Many earlier studies have relied on techniques such as measuring melt inclusions — which are tiny droplets of magma that have been trapped by a crystals that grows around them — and measuring lava and other volcanic deposits that have erupted to the Earth’s surface. “However, these methods have inherent limitations that obfuscate the full range of H20 in arc magmas,” the paper states.

Urann and his Ph.D. supervisor, Véronique Le Roux, who is a co-author of the paper, developed methods with the Secondary Ion Mass Spectrometry instrument located at WHOI to measure water content in minerals, with their work building on other efforts that suggested that arc magmas should contain significantly more H20 than inferred from melt-inclusion measurements.

The researchers determined that instead of examining lava samples that have erupted to the Earth’s surface, it would be fruitful to examine deep crustal magmas that have not lost too much of their water content.

“Although you can’t retrieve the liquid magma at these depths, what you may be able to sample is a cumulate: it is magma that has solidified at depth in the crust. We’re lucky enough that sometimes with plate tectonics, some of those really deep crusts are exhumed at the surface,” says Le Roux, associate scientist in the Geology and Geophysics department at WHOI, and Faculty member of the MIT-WHOI Joint Program. The researchers used cumulates that the paper’s co-authors had collected from the Kohistan paleo-arc terrane in the Himalaya Mountain range in northwestern Pakistan.

Instead of examining surface rocks that travel far up through the crust as magma, and lose much of their water content in the process, the researchers examined magma — lower crustal cumulates — that had crystallized deep down in the crust at a high enough pressure to retain their original water content signature.

Le Roux says that “analyzing water in cumulate minerals is a new promising approach to access the deep levels of the crust in subduction zones.”

The researchers calculated that the magma they analyzed contained between 10-20 weight percent of water depending on the magma’s composition. “While this weight percent of water had been predicted experimentally as being possible, it had never been shown on natural samples,” Le Roux said.

“The bottom line is that arc magmas can be wetter than we thought,” said Urann.

This study was supported by NSF awards to Le Roux, Behn, and Chin, funding from the Woods Hole Oceanographic Institution Ocean Venture Fund and from the National Science Foundation’s (NSF, USA) Division of Ocean Sciences Post-doctoral Research Fellow grant to Urann;; and support from the Visiting Scholar at SCIENCE programme at the University of Copenhagen, Denmark, to Le Roux.

Reference:
B. M. Urann, V. Le Roux, O. Jagoutz, O. Müntener, M. D. Behn, E. J. Chin. High water content of arc magmas recorded in cumulates from subduction zone lower crust. Nature Geoscience, 2022; DOI: 10.1038/s41561-022-00947-w

Note: The above post is reprinted from materials provided by Woods Hole Oceanographic Institution.

Related Articles