back to top
27.8 C
New York
Saturday, April 19, 2025
Home Blog Page 235

Chemistry of seabed’s hot vents could explain emergence of life

Image courtesy of MARUM, University of Bremen and NOAA-Pacific Marine Environmental Laboratory.

Hot vents on the seabed could have spontaneously produced the organic molecules necessary for life, according to new research by UCL chemists. The study shows how the surfaces of mineral particles inside hydrothermal vents have similar chemical properties to enzymes, the biological molecules that govern chemical reactions in living organisms. This means that vents are able to create simple carbon-based molecules, such as methanol and formic acid, out of the dissolved CO2 in the water.

The discovery, published in the journal Chemical Communications, explains how some of the key building blocks for organic chemistry were already being formed in nature before life emerged — and may have played a role in the emergence of the first life forms. It also has potential practical applications, showing how products such as plastics and fuels could be synthesised from CO2 rather than oil.

“There is a lot of speculation that hydrothermal vents could be the location where life on Earth began,” says Nora de Leeuw, who heads the team. “There is a lot of CO2 dissolved in the water, which could provide the carbon that the chemistry of living organisms is based on, and there is plenty of energy, because the water is hot and turbulent. What our research proves is that these vents also have the chemical properties that encourage these molecules to recombine into molecules usually associated with living organisms.”

The team combined laboratory experiments with supercomputer simulations to investigate the conditions under which the mineral particles would catalyse the conversion of CO2 into organic molecules. The experiments replicated the conditions present in deep sea vents, where hot and slightly alkaline water rich in dissolved CO2 passes over the mineral greigite (Fe3S4), located on the inside surfaces of the vents. These experiments hinted at the chemical processes that were underway. The simulations, which were run on UCL’s Legion supercomputer and HECToR (the UK national supercomputing service), provided a molecule-by-molecule view of how the CO2 and greigite interacted, helping to make sense of what was being observed in the experiments. The computing power and programming expertise to accurately simulate the behaviour of individual molecules in this way has only become available in the past decade.

“We found that the surfaces and crystal structures inside these vents act as catalysts, encouraging chemical changes in the material that settles on them,” says Nathan Hollingsworth, a co-author of the study. “They behave much like enzymes do in living organisms, breaking down the bonds between carbon and oxygen atoms. This lets them combine with water to produce formic acid, acetic acid, methanol and pyruvic acid. Once you have simple carbon-based chemicals such as these, it opens the door to more complex carbon-based chemistry.”

Theories about the emergence of life suggest that increasingly complex carbon-based chemistry led to self-replicating molecules — and, eventually, the appearance of the first cellular life forms. This research shows how one of the first steps in this journey may have occurred. It is proof that simple organic molecules can be synthesised in nature without living organisms being present. It also confirms that hydrothermal vents are a plausible location for at least part of this process to have occurred.

The study could also have a practical applications, as it provides a method for creating carbon-based chemicals out of CO2, without the need for extreme heat or pressure. This could, in the long term, replace oil as the raw material for products such as plastics, fertilisers and fuels.

This study shows, albeit on a very small scale, that such products, which are currently produced from non-renewable raw materials, can be produced by more environmentally friendly means. If the process can be scaled up to commercially viable scales, it would not only save oil, but use up CO2 — a greenhouse gas — as a raw material.

Reference:
A. Roldan, N. Hollingsworth, A. Roffey, H.-U. Islam, J. B. M. Goodall, C. R. A. Catlow, J. A. Darr, W. Bras, G. Sankar, K. B. Holt, G. Hogarth, N. H. de Leeuw. Bio-inspired CO2conversion by iron sulfide catalysts under sustainable conditions. Chem. Commun., 2015; 51 (35): 7501 DOI: 10.1039/C5CC02078F

Note: The above story is based on materials provided by University College London.

Platinum

Platinum Talnakh Deposit, Noril’sk, Taimyr Peninsula, Eastern-Siberian Region, Russia Thumbnail, 0.8 x 0.9 x 0.5 cm “Courtesy of Rob Lavinsky, The Arkenstone, www.iRocks.com”
Chemical Formula: Pt
Locality: Most notably from the Urals, Russia and Brazil.
Name Origin: Spanish, platina = “silver.”

 

Platinum is a chemical element with the chemical symbol Pt and an atomic number of 78. It is a dense, malleable, ductile, highly unreactive, precious, gray-white transition metal. Its name is derived from the Spanish term platina, which is literally translated into “little silver”.Platinum is a member of the platinum group of elements and group 10 of the periodic table of elements. It has six naturally occurring isotopes. It is one of the rarest elements in the Earth’s crust with an average abundance of approximately 5 μg/kg. It occurs in some nickel and copper ores along with some native deposits, mostly in South Africa, which accounts for 80% of the world production. Because of its scarcity in the earth’s crust, only a few hundred tonnes are produced annually, and is therefore highly valuable and is a major precious metal commodity.Platinum is the least reactive metal. It has remarkable resistance to corrosion, even at high temperatures, and is therefore considered a noble metal. Consequently, platinum is often found chemically uncombined as native platinum. Because it occurs naturally in the alluvial sands of various rivers, it was first used by pre-Columbian South American natives to produce artifacts. It was referenced in European writings as early as 16th century, but it was not until Antonio de Ulloa published a report on a new metal of Colombian origin in 1748 that it became investigated by scientists.

Platinum is used in catalytic converters, laboratory equipment, electrical contacts and electrodes, platinum resistance thermometers, dentistry equipment, and jewellery. Being a heavy metal, it leads to health issues upon exposure to its salts, but due to its corrosion resistance, it is not as toxic as some metals. Compounds containing platinum, most notably cisplatin, are applied in chemotherapy against certain types of cancer.

Physical Properties of Platinum

Cleavage: None
Color: Whitish steel gray, Steel gray, Dark gray.
Density: 14 – 22, Average = 18
Diaphaneity: Opaque
Fracture: Hackly – Jagged, torn surfaces, (e.g. fractured metals).
Hardness: 4-4.5 – Between Fluorite and Apatite
Luminescence: Non-fluorescent.
Luster: Metallic
Magnetism: Naturally weak
Streak: grayish white

Photos:

Native Platinum nugget, locality Kondyor mine, Khabarovsk Krai, Russia. Size: 35 × 23 × 14 mm, Collection: M.R.
Platinum

Map shows content and origins of the geologic basement

This is a map showing basement domains according to generalized original crust types. Credit: USGS

A map showing the many different pieces of Earth’s crust that comprise the nation’s geologic basement is now available from the U.S. Geological Survey. This is the first map to portray these pieces, from the most ancient to recent, by the events that influenced their composition, starting with their origin. This product provides a picture of the basement for the U.S., including Alaska, that can help scientists  produce regional and national mineral resource assessments, starting with the original metal endowments in source rocks.

“Traditionally, scientists have assessed mineral resources using clues at or near the Earth’s surface to determine what lies below,” said USGS scientist Karen Lund, who led the project. “This map is based on the concept that the age and origins of basement rocks influenced the nature and location of mineral deposits. It offers a framework to examine mineral resources and other geologic aspects of the continent from its building blocks up,” said Lund.

More than 80 pieces of crust have been added to the nation’s basement since the Earth began preserving crust about 3.6 billion years ago. These basement domains had different ages and origins before they became basement rocks, and this map includes these as key factors that determined their compositions and the original metals that may be available for remobilization and concentration into ore deposits. The map further classifies the basement domains according to how and when they became basement, as these events also influence the specific metals and deposit types that might be found in a region.

Users can identify domains potentially containing specific metals or deposit types. They can configure the companion database to show the construction of the U.S. through time.  The map also provides a template to correlate regional to national fault and earthquake patterns.  The map is also available on a separate site, where users can combine data and overlay known mineral sites or other features on the domains.

Basement rocks are crystalline rocks lying above the mantle and beneath all other rocks and sediments. They are sometimes exposed at the surface, but often they are buried under miles of rock and sediment and can only be mapped over large areas using remote geophysical surveys. This map was compiled using a variety of methods, including data from national-scale gravity and aeromagnetic surveys.

Crustal rocks are modified several times before they become basement, and these transitions alter their composition. Basement rocks are continental crust that has been modified by a wide variety of plate tectonic events involving deformation, metamorphism, deposition, partial melting and magmatism. Ultimately, continental crust forms from pre-existing oceanic crust and overlying sediments that have been thus modified.

It is not only the myriad processes that result in varying basement rock content but also the time when these processes occurred during the Earth’s history.  For example, because the Earth has evolved as a planet during its 4.5 billion year history, early deposit types formed when there was less oxygen in the atmosphere and the thin crust was hotter.  The ancient domains are now more stable and less likely to be altered by modern processes that could cause metals to migrate.  By contrast, basement rocks that formed out of crust that is less than one billion years old have origins that can be interpreted according to the present-day rates and scales of plate tectonic processes that reflect a more mature planet with a thicker crust.

By incorporating ancient to modern processes, this map offers a more complete and consistent portrait of the nation’s geologic basement than previous maps and presents a nationwide concept of basement for future broad-scale mineral resource assessments and other geologic studies.

Note: The above story is based on materials provided by United States Geological Survey.

Ascent or no ascent? How hot material is stopped in Earth’s mantle

A figure of the flood basalts that ascended through the Earth’s crust and reached the surface in Siberia Credit: GFZ

Gigantic volumes of hot material rising from the deep earth’s mantle to the base of the lithosphere have shaped the face of our planet. Provided they have a sufficient volume, they can lead to break-up of continents or cause mass extinction events in certain periods of the Earth’s history. So far it was assumed that because of their high temperatures those bodies – called mantle plumes – ascend directly from the bottom of the earth’s mantle to the lithosphere. In the most recent volume of Nature Communications, a team of researchers from the Geodynamic Modeling Section of German Research Centre for Geosciences GFZ explains possible barriers for the ascent of these mantle plumes and under which conditions the hot material can still reach the surface. In addition, the researchers resolve major conflicts surrounding present model predictions.

The largest magmatic events on Earth are caused by massive melting of ascending large volumes of hot material from the Earth’s interior. The surface manifestations of these events in Earth’s history are still visible in form of the basaltic rocks of Large Igneous Provinces. The prevailing concept of mantle plumes so far was that because of their high temperatures, they have strongly positive buoyancy that causes them to ascend and uplift the overlying Earth’s surface by more than one kilometer. In addition, it was assumed that these mantle plumes are mushroom-shaped with a large bulbous head and a much thinner tail with a radius of only 100 km, acting as an ascent channel for new material. But here is the problem: In many cases, this concept does not agree with geological and geophysical observations, which report much wider zones of ascending material and much smaller surface uplift.

The solution is to incorporate observations from plate tectonics: In many places on the Earth’s surface, such as in the subduction zones around the Pacific, ocean floor sinks down into the Earth’s mantle. Apparently, this material descends up to a great depth in the Earth’s mantle over several millions of years. This former ocean floor has a different chemical composition than the surrounding Earth’s mantle, leading to a higher density. If this material is entrained by mantle plumes, which is indicated by geochemical analyses of the rocks of Large Igneous Provinces, the buoyancy of the plume will decrease. However, this opens up the question if this hot material is still buoyant enough to rise all the way from the bottom of the Earth’s mantle to the surface.

GFZ-researcher Juliane Dannberg: “Our computer simulations show that on the one hand, the temperature difference between the plume and the surrounding mantle has to be high enough to trigger the ascent of the plume. On the other hand, a minimum volume is required to cross a region in the upper mantle where the prevailing pressures and temperatures lead to minerals with a much higher density than the surrounding rocks.”

Under these conditions, mantles plumes with very low buoyancy can develop, preventing them from causing massive volcanism and environmental catastrophes, but instead making them pond inside of the Earth’s mantle. However, mantle plumes that are able to ascend through the whole mantle are much wider, remain in the Earth’s mantle for hundreds of millions of years and only uplift the surface by a few hundred meters, which agrees with observations.

Reference:
Juliane Dannberg, Stephan V. Sobolev. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. Nature Communications, 2015; 6: 6960 DOI: 10.1038/ncomms7960

Note: The above story is based on materials provided by Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences.

Geothermal energy, aluto volcano, and Ethiopia’s rift valley

Conceptual model summarizing the evolution of the major structures on Aluto volcano and their controls on surface volcanism, geothermal fluids, and degassing. Credit: Hutchison et al. and Geosphere

In their open access paper published in Geosphere this month, William Hutchison and colleagues present new data from Ethiopia’s Rift Valley and Aluto volcano, a major volcano in the region. Aluto is Ethiopia’s main source of geothermal energy, a low-carbon resource that is expected to grow considerably in the near future. Preexisting volcanic and tectonic structures have played a key role in the development of the Aluto volcanic complex and continue to facilitate the expulsion of gases and geothermal fluids.

Using high-resolution airborne imagery, field observations, and CO2 degassing data, the authors explore in great detail how these preexisting structures control fluid pathways and spatial patterns of volcanism, hydrothermal alteration, and degassing. Understanding these preexisting structures, they write, “Is a major task toward defining the evolution of rift zones and also has important implications for geothermal exploration, mineralization, and the assessment of volcanic hazard.”

In concluding their paper, Hutchison and colleagues write, “The new model for the structural development and volcanic edifice growth at Aluto opens up a number of avenues for future work. A major challenge is to determine how geothermal and magmatic fluids are distributed and stored in the subsurface of Aluto and how they ascend along the mapped fault zones.” These future studies, they note, “should focus on generating high-spatial-resolution maps of off-rift tectonic structures and should be complemented by detailed field work to constrain the stress field orientations during the development of the Aluto magma reservoir.”

Reference:
Structural controls on fluid pathways in an active rift system: A case study of the Aluto volcanic complex, William Hutchison et al., COMET, University of Oxford, Oxford, UK. Published online on 2 Apr. 2015; DOI: 10.1130/GES01119.1.

Note : The above story is based on materials provided by Geological Society of America.

New Insight on Ground Shaking from Man-Made Earthquakes

Research has identified 17 areas in the central and eastern United States with increased rates of induced seismicity. Since 2000, several of these areas have experienced high levels of seismicity, with substantial increases since 2009 that continue today. Credit: Image courtesy of USGS

Significant strides in science have been made to better understand potential ground shaking from induced earthquakes, which are earthquakes triggered by man-made practices.

Earthquake activity has sharply increased since 2009 in the central and eastern United States. The increase has been linked to industrial operations that dispose of wastewater by injecting it into deep wells.

The U. S. Geological Survey (USGS) released a report today that outlines a preliminary set of models to forecast how hazardous ground shaking could be in the areas where sharp increases in seismicity have been recorded. The models ultimately aim to calculate how often earthquakes are expected to occur in the next year and how hard the ground will likely shake as a result. This report looked at the central and eastern United States; future research will incorporate data from the western states as well.

This report also identifies issues that must be resolved to develop a final hazard model, which is scheduled for release at the end of the year after the preliminary models are further examined. These preliminary models should be considered experimental in nature and should not be used for decision-making.

USGS scientists identified 17 areas within eight states with increased rates of induced seismicity. Since 2000, several of these areas have experienced high levels of seismicity, with substantial increases since 2009 that continue today. This is the first comprehensive assessment of the hazard levels associated with induced earthquakes in these areas. A detailed list of these areas is provided in the accompanying map, including the states of Alabama, Arkansas, Colorado, Kansas, New Mexico, Ohio, Oklahoma, and Texas.

Scientists developed the models by analyzing earthquakes in these zones and considering their rates, locations, maximum magnitude, and ground motions.

“This new report describes for the first time how injection-induced earthquakes can be incorporated into U.S. seismic hazard maps,” said Mark Petersen, Chief of the USGS National Seismic Hazard Modeling Project. “These earthquakes are occurring at a higher rate than ever before and pose a much greater risk to people living nearby. The USGS is developing methods that overcome the challenges in assessing seismic hazards in these regions in order to support decisions that help keep communities safe from ground shaking.”

In 2014, the USGS released updated National Seismic Hazard Maps, which describe hazard levels for natural earthquakes. Those maps are used in building codes, insurance rates, emergency preparedness plans, and other applications. The maps forecast the likelihood of earthquake shaking within a 50-year period, which is the average lifetime of a building. However, these new induced seismicity products display intensity of potential ground shaking from induced earthquakes in a one-year period. This shorter timeframe is appropriate because the induced activity can vary rapidly with time and is subject to commercial and policy decisions that could change at any point.

These new methods and products result in part from a workshop hosted by the USGS and the Oklahoma Geological Survey. The workshop, described in the new report, brought together a broad group of experts from government, industry and academic communities to discuss the hazards from induced earthquakes.

Wastewater that is salty or polluted by chemicals needs to be disposed of in a manner that prevents contaminating freshwater sources. Large volumes of wastewater can result from a variety of processes, such as a byproduct from energy production. Wastewater injection increases the underground pore pressure, which may lubricate nearby faults thereby making earthquakes more likely to occur. Although the disposal process has the potential to trigger earthquakes, most wastewater disposal wells do not produce felt earthquakes.

Many questions have been raised about whether hydraulic fracturing—commonly referred to as “fracking”—is responsible for the recent increase of earthquakes. USGS’s studies suggest that the actual hydraulic fracturing process is only occasionally the direct cause of felt earthquakes.

Reference:
Read the newly published USGS report, “Incorporating Induced Seismicity in the 2014 United States National Seismic Hazard Model—Results of 2014 Workshop and Sensitivity Studies.”. DOI: 10.3133/ofr20151070

Note: The above story is based on materials provided by USGS.

Calbuco Volcano Eruption,Chile , April 23, 2015

The Calbuco volcano erupted Wednesday for the first time in over 40 years, billowing a huge ash cloud over a sparsely populated, mountainous area in southern Chile. Authorities ordered the evacuation of the 1,500 inhabitants of the nearby town of Ensenada, along with residents of two smaller communities.

Video Copyright © Volcan de Colima

Scientists see deeper Yellowstone magma

A new University of Utah study in the journal Science provides the first complete view of the plumbing system that supplies hot and partly molten rock from the Yellowstone hotspot to the Yellowstone supervolcano. The study revealed a gigantic magma reservoir beneath the previously known magma chamber. This cross-section illustration cutting southwest-northeast under Yelowstone depicts the view revealed by seismic imaging. Seismologists say new techniques have provided a better view of Yellowstone’s plumbing system, and that it hasn’t grown larger or closer to erupting. They estimate the annual chance of a Yellowstone supervolcano eruption is 1 in 700,000. Credit: Hsin-Hua Huang, University of Utah

University of Utah seismologists discovered and made images of a reservoir of hot, partly molten rock 12 to 28 miles beneath the Yellowstone supervolcano, and it is 4.4 times larger than the shallower, long-known magma chamber.

The hot rock in the newly discovered, deeper magma reservoir would fill the 1,000-cubic-mile Grand Canyon 11.2 times, while the previously known magma chamber would fill the Grand Canyon 2.5 times, says postdoctoral researcher Jamie Farrell, a co-author of the study published online today in the journal Science.

“For the first time, we have imaged the continuous volcanic plumbing system under Yellowstone,” says first author Hsin-Hua Huang, also a postdoctoral researcher in geology and geophysics. “That includes the upper crustal magma chamber we have seen previously plus a lower crustal magma reservoir that has never been imaged before and that connects the upper chamber to the Yellowstone hotspot plume below.”

Contrary to popular perception, the magma chamber and magma reservoir are not full of molten rock. Instead, the rock is hot, mostly solid and spongelike, with pockets of molten rock within it. Huang says the new study indicates the upper magma chamber averages about 9 percent molten rock — consistent with earlier estimates of 5 percent to 15 percent melt — and the lower magma reservoir is about 2 percent melt.

So there is about one-quarter of a Grand Canyon worth of molten rock within the much larger volumes of either the magma chamber or the magma reservoir, Farrell says.

No increase in the danger

The researchers emphasize that Yellowstone’s plumbing system is no larger — nor closer to erupting — than before, only that they now have used advanced techniques to make a complete image of the system that carries hot and partly molten rock upward from the top of the Yellowstone hotspot plume — about 40 miles beneath the surface — to the magma reservoir and the magma chamber above it.

“The magma chamber and reservoir are not getting any bigger than they have been, it’s just that we can see them better now using new techniques,” Farrell says.

Study co-author Fan-Chi Lin, an assistant professor of geology and geophysics, says: “It gives us a better understanding the Yellowstone magmatic system. We can now use these new models to better estimate the potential seismic and volcanic hazards.”

The researchers point out that the previously known upper magma chamber was the immediate source of three cataclysmic eruptions of the Yellowstone caldera 2 million, 1.2 million and 640,000 years ago, and that isn’t changed by discovery of the underlying magma reservoir that supplies the magma chamber.

“The actual hazard is the same, but now we have a much better understanding of the complete crustal magma system,” says study co-author Robert B. Smith, a research and emeritus professor of geology and geophysics at the University of Utah.

The three supervolcano eruptions at Yellowstone — on the Wyoming-Idaho-Montana border — covered much of North America in volcanic ash. A supervolcano eruption today would be cataclysmic, but Smith says the annual chance is 1 in 700,000.

Before the new discovery, researchers had envisioned partly molten rock moving upward from the Yellowstone hotspot plume via a series of vertical and horizontal cracks, known as dikes and sills, or as blobs. They still believe such cracks move hot rock from the plume head to the magma reservoir and from there to the shallow magma chamber.

Anatomy of a supervolcano

The study in Science is titled, “The Yellowstone magmatic system from the mantle plume to the upper crust.” Huang, Lin, Farrell and Smith conducted the research with Brandon Schmandt at the University of New Mexico and Victor Tsai at the California Institute of Technology. Funding came from the University of Utah, National Science Foundation, Brinson Foundation and William Carrico.

Yellowstone is among the world’s largest supervolcanoes, with frequent earthquakes and Earth’s most vigorous continental geothermal system.

The three ancient Yellowstone supervolcano eruptions were only the latest in a series of more than 140 as the North American plate of Earth’s crust and upper mantle moved southwest over the Yellowstone hotspot, starting 17 million years ago at the Oregon-Idaho-Nevada border. The hotspot eruptions progressed northeast before reaching Yellowstone 2 million years ago.

Here is how the new study depicts the Yellowstone system, from bottom to top:

  • Previous research has shown the Yellowstone hotspot plume rises from a depth of at least 440 miles in Earth’s mantle. Some researchers suspect it originates 1,800 miles deep at Earth’s core. The plume rises from the depths northwest of Yellowstone. The plume conduit is roughly 50 miles wide as it rises through Earth’s mantle and then spreads out like a pancake as it hits the uppermost mantle about 40 miles deep. Earlier Utah studies indicated the plume head was 300 miles wide. The new study suggests it may be smaller, but the data aren’t good enough to know for sure.
  • Hot and partly molten rock rises in dikes from the top of the plume at 40 miles depth up to the bottom of the 11,200-cubic mile magma reservoir, about 28 miles deep. The top of this newly discovered blob-shaped magma reservoir is about 12 miles deep, Huang says. The reservoir measures 30 miles northwest to southeast and 44 miles southwest to northeast. “Having this lower magma body resolved the missing link of how the plume connects to the magma chamber in the upper crust,” Lin says.
  • The 2,500-cubic mile upper magma chamber sits beneath Yellowstone’s 40-by-25-mile caldera, or giant crater. Farrell says it is shaped like a gigantic frying pan about 3 to 9 miles beneath the surface, with a “handle” rising to the northeast. The chamber is about 19 miles from northwest to southeast and 55 miles southwest to northeast. The handle is the shallowest, long part of the chamber that extends 10 miles northeast of the caldera.

Scientists once thought the shallow magma chamber was 1,000 cubic miles. But at science meetings and in a published paper this past year, Farrell and Smith showed the chamber was 2.5 times bigger than once thought. That has not changed in the new study.

Discovery of the magma reservoir below the magma chamber solves a longstanding mystery: Why Yellowstone’s soil and geothermal features emit more carbon dioxide than can be explained by gases from the magma chamber, Huang says. Farrell says a deeper magma reservoir had been hypothesized because of the excess carbon dioxide, which comes from molten and partly molten rock.

A better, deeper look at Yellowstone

As with past studies that made images of Yellowstone’s volcanic plumbing, the new study used seismic imaging, which is somewhat like a medical CT scan but uses earthquake waves instead of X-rays to distinguish rock of various densities. Quake waves go faster through cold rock, and slower through hot and molten rock.

For the new study, Huang developed a technique to combine two kinds of seismic information: Data from local quakes detected in Utah, Idaho, the Teton Range and Yellowstone by the University of Utah Seismograph Stations and data from more distant quakes detected by the National Science Foundation-funded EarthScope array of seismometers, which was used to map the underground structure of the lower 48 states.

The Utah seismic network has closely spaced seismometers that are better at making images of the shallower crust beneath Yellowstone, while EarthScope’s seismometers are better at making images of deeper structures.

“It’s a technique combining local and distant earthquake data better to look at this lower crustal magma reservoir,” Huang says.

Reference:
Hsin-Hua Huang, Fan-Chi Lin, Brandon Schmandt, Jamie Farrell, Robert B. Smith, Victor C. Tsai. The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 2015 DOI: 10.1126/science.aaa5648

Note: The above story is based on materials provided by University of Utah.

Researchers map genomes of woolly mammoths, raising possibility of bringing them back

Mammoth remains found on the Taimyr Pennisula in Siberia. An international team of researchers has sequenced the genome of the mammoth, offering new information on what may have led to its extinction at the end of the last Ice Age. Photo by Debi Poinar

An international team of researchers has sequenced the nearly complete genome of two Siberian woolly mammoths — revealing the most complete picture to date — including new information about the species’ evolutionary history and the conditions that led to its mass extinction at the end of the Ice Age.

“This discovery means that recreating extinct species is a much more real possibility, one we could in theory realize within decades,” says evolutionary geneticist Hendrik Poinar, director of the Ancient DNA Centre at McMaster University and a researcher at the Institute for Infectious Disease Research, the senior Canadian scientist on the project.

“With a complete genome and this kind of data, we can now begin to understand what made a mammoth a mammoth — when compared to an elephant — and some of the underlying causes of their extinction which is an exceptionally difficult and complex puzzle to solve,” he says.

While scientists have long argued that climate change and human hunting were major factors behind the mammoth’s extinction, the new data suggests multiple factors were at play over their long evolutionary history.

Researchers from McMaster, Harvard Medical School, the Swedish Museum of Natural History, Stockholm University and others produced high-quality genomes from specimens taken from the remains of two male woolly mammoths, which lived about 40,000 years apart.

One had lived in northeastern Siberia and is estimated to be nearly 45,000 years old. The other -believed to be from one of the last surviving mammoth populations — lived approximately 4,300 years ago on Russia’s Wrangel Island, located in the Arctic Ocean.

“We found that the genome from one of the world’s last mammoths displayed low genetic variation and a signature consistent with inbreeding, likely due to the small number of mammoths that managed to survive on Wrangel Island during the last 5,000 years of the species’ existence,” says Love Dalén, an associate professor of Bioinformatics and Genetics at the Swedish Museum of Natural History.

Scientists used sophisticated technology to tease bits and pieces of highly fragmented DNA from the ancient specimens, which they then used to sequence the genomes. Through careful analysis, they determined the animal populations had suffered and recovered from a significant setback roughly 250,000 to 300,000 years ago. However, say researchers, another severe decline occurred in the final days of the Ice Age, marking the end.

“The dates on these current samples suggest that when Egyptians were building pyramids, there were still mammoths living on these islands,” says Poinar. “Having this quality of data can help with our understanding of the evolutionary dynamics of elephants in general and possible efforts at de-extinction.”

The latest research is the continuation of the pioneering work Poinar and his team began in 2006, when they first mapped a partial mammoth genome, using DNA extracted from carcasses found in permafrost in the Yukon and Siberia.

The study is published online in the Cell Press journal Current Biology.

Video

Reference:
Palkopoulou et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Current Biology, 2015 DOI: 10.1016/j.cub.2015.04.007

Note: The above story is based on materials provided by McMaster University. The original article was written by Michelle Donovan.

Looking to fossils to predict tooth evolution in rodents

This is the skull of a Laotian rock rat. Over evolutionary time, rodent molars have become taller. Credit: Vagan Tapaltsyan and Ophir Klein

Fifty million years ago, all rodents had short, stubby molars–teeth similar to those found in the back of the human mouth, used for grinding food. Over time, rodent teeth progressively evolved to become taller, and some rodent species even evolved continuously growing molar teeth. A new study publishing April 23 in the journal Cell Reports predicts that most rodent species will have ever-growing molars in the far distant future.

“Our analyses and simulations point towards a gradual evolution of taller teeth, and in our future studies we will explore whether tinkering with the genetic mechanisms of tooth formation in lab mice–which have short molar teeth–will replicate the evolution of taller teeth,” says co-senior author Ophir Klein, an associate professor at the University of California San Francisco School of Dentistry.

For their research, Dr. Klein and his colleagues used fossil data from thousands of extinct rodent species to study the evolution of dental stem cells, which are required for continuous tooth growth. They found evidence that most of the species possess the potential for acquiring dental stem cells, and that the final developmental step on the path toward continuously growing teeth may be quite small. “Just studying how molars become taller should tell us about the first steps in the arrival of stem cells,” Klein says.

The team’s computer simulations predict that rodents with continuously growing teeth and active stem cell reserves will eventually outcompete all other rodent species, whose teeth have a finite length. This won’t likely apply to people, however.

“As we humans have short teeth, evolutionarily speaking we would have to go through multiple steps that would take millions of years before we could acquire continuously growing teeth. Obviously, this is not something that would happen as long as we cook our food and don’t wear down our teeth,” says co-senior author Jukka Jernvall, an evolutionary biologist at the University of Helsinki, in Finland. “However, regarding rodents, it will be interesting to resolve the regional and taxonomic details of the 50 million year trend.”

Reference:
Mushegyan et al. Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years. Cell Reports, 2015 DOI: 10.1016/j.celrep.2015.03.064

Note: The above story is based on materials provided by Cell Press.

Catalina Island’s slow sink—and potential tsunami hazard

Underwater beach terraces around Santa Catalina Island suggest that the island is sinking. Credit: Chris Castillo, Stanford University

New images of ancient, underwater beach terraces around Santa Catalina Island suggest that the island is sinking, probably as a result of changes in the active fault systems around the island. At the rate that can be calculated so far, the island could disappear within three million years, as it is sinking approximately one foot every thousand years.

Chris Castillo of Stanford University and colleagues used a sort of underwater “ultrasound” called seismic reflection profiling to map out the traces of submerged marine terraces around the island, which correspond to beaches cut around the island at different sea levels. Although sea level around the island hasn’t dropped below 130 meters over the last 1 million years, the lowest level terraces are found at more than 350 meters, suggesting the island itself has sunk about 220 meters since these deepest terraces were formed.

There are several faults around the island, dominantly strike-slip to the northeast and a transtensional fault to the island’s southwest side. Within the last one million years, the researchers say, changes have happened within this fault system so that one portion of the system has “shut off” while another has become more active and allowed the island to subside. Knowing more about the exact timing and placement of this change could help scientists understand more about the potential seismic risks across fault systems in southern California. The researchers also found evidence of old landslides along a fault on the island that points toward Los Angeles, according to Castillo, which could indicate that the island may pose a small tsunami risk for the city if such landslides occur again.

Castillo will present his research at the annual meeting of the Seismological Society of America (SSA) in Pasadena, Calif.

Note : The above story is based on materials provided by Seismological Society of America.

Calbuco Volcano Eruption

The Calbuco volcano erupted Wednesday for the first time in over 40 years, billowing a huge ash cloud over a sparsely populated, mountainous area in southern Chile. Authorities ordered the evacuation of the 1,500 inhabitants of the nearby town of Ensenada, along with residents of two smaller communities.

 

Video Provided by: Rodrigo Barrera

Spectacular Calbuco voulcano eruption in Chile

The Calbuco volcano erupted Wednesday for the first time in over 40 years, billowing a huge ash cloud over a sparsely populated, mountainous area in southern Chile. Authorities ordered the evacuation of the 1,500 inhabitants of the nearby town of Ensenada, along with residents of two smaller communities.

Video Provided by: RT

Sexing Stegosaurus “Stegosaurus plates may have differed between male, female”

Some Stegosaurus had wide plates, some had tall, with the wide plates being up to 45 percent larger overall than the tall plates. According to a new study by University of Bristol, UK student, Evan Saitta, the tall-plated Stegosaurus and the wide-plated Stegosaurus were not two distinct species, nor were they individuals of different age: they were actually males and females. This is the first convincing evidence for sexual differences in a species of dinosaur. Credit: Copyright Evan Saitta

Stegosaurus, a large, herbivorous dinosaur with two staggered rows of bony plates along its back and two pairs of spikes at the end of its tail, lived roughly 150 million years ago during the Late Jurassic in the western United States.

Some individuals had wide plates, some had tall, with the wide plates being up to 45 per cent larger overall than the tall plates. According to the new study, the tall-plated Stegosaurus and the wide-plate Stegosaurus were not two distinct species, nor were they individuals of different age: they were actually males and females.

Professor Michael Benton, Director of the Masters in Palaeobiology at the University of Bristol said: “Evan made this discovery while he was completing his undergraduate thesis at Princeton University. It’s very impressive when an undergraduate makes such a major scientific discovery.

Sexual dimorphism (a term used to describe distinct anatomical differences between males and females of the same species) is common in living animals — think of the manes of lions or the antlers of deer — yet is surprisingly difficult to determine in extinct species.

Despite many previous claims of sexual dimorphism in dinosaurs, current researchers find them to be inconclusive because they do not rule out other possible explanations for why differences in anatomy might be present between fossil specimens. For example, two individuals that differ in anatomy might be two separate species, a young and an old individual, or a male and a female individual.

Having spent six summers in central Montana as part of an excavation crew digging up the first ever Stegosaurus ‘graveyard’, Evan Saitta was able to test these alternative explanations and others in the species Stegosaurus mjosi.

The group of dinosaurs excavated in Montana demonstrated the coexistence of individuals that only varied in their plates. Other skeletal differences indicating separation of ecological niches would have been expected if the two were different species.

The study also found that the two varieties were not a result of growth. CT scanning at Billings Clinic in Montana, as well as thin sections sampled from the plates for microscope analysis, showed that the bone tissues had ceased growing in both varieties. Neither type of plate was in the process of growing into the other.

With other possibilities ruled out, the best explanation for the two varieties of plates is that one type belonged to males and the other, females.

Speculating about which is which, Evan Saitta said: “As males typically invest more in their ornamentation, the larger, wide plates likely came from males. These broad plates would have provided a great display surface to attract mates. The tall plates might have functioned as prickly predator deterrents in females.”

Stegosaurus may not have been the only dinosaur to exhibit sexual dimorphism. Other species showed extra-large crests or nose horns, which were potentially sexual features. Male animals often fight or display for mates, just like red deer or peacocks today.

Not only does Saitta’s work show that dinosaurs exhibited sexual dimorphism, it suggests that the ornamentation of at least some species was used for sexual display.

The presence of sexual dimorphism in an extinct species can provide scientists with a much clearer picture of its behaviour than would otherwise be possible.

Reference:
Saitta ET (2015). Evidence for Sexual Dimorphism in the Plated Dinosaur Stegosaurus mjosi (Ornithischia, Stegosauria) from the Morrison Formation (Upper Jurassic) of Western USA. PLoS ONE, 2015 DOI: 10.1371/journal.pone.0123503

Note: The above story is based on materials provided by University of Bristol.

Magma intrusion is likely source of Colombia-Ecuador border quake swarms

Credit: R. Corredor Torres

The “seismic crisis” around the region of the Chiles and Cerro Negro de Mayasquer volcanoes near the Columbia-Ecuador border is likely caused by intruding magma, according to a report by R. Corredor Torres of the Servicio Geológico Colombiano and colleagues presented at the annual meeting of the Seismological Society of America (SSA).

The intruding magma appears to be interacting with the regional tectonics to spawn micro-earthquakes, which at their peak of activity numbered thousands of micro-earthquakes each day. Most of the earthquakes were less than magnitude 3, although the largest quake to date was magnitude 5.6 that took place in October 2014. When the earthquake swarms began in 2013, the Colombian Servicio Geológico Colombiano and the Ecuadoran Instituto Geofísico of the Escuela Politécnica Nacional collaborated to set up a monitoring system to observe the swarms and judge the risk of volcanic eruption for the surrounding population.

The largest perceived threat of eruption came in the fall of 2014, when the activity level was changed from yellow to orange, meaning a probable occurrence of eruption in days to weeks. Due to the occurrence of a magnitude 5.6 earthquake and subsequent aftershocks, some houses in the area were damaged and local residents decided to sleep in tents to feel safe, accepting support from the Colombian Disaster Prevention Office, said Torres.

Data collected by the new monitoring stations suggest that most of the earthquakes in the area are of a type of volcano-tectonic quakes, which occur when the movement of magma-and the fluids and gases it releases-creates pressure changes in the rocks above. Based on the seismic activity in the area, the researchers infer that millions of cubic meters of magma have moved into the area deep under the Chile and Cerro Negro volcanoes. However, both volcanoes appear to have been dormant for at least 10,000 years, and the tectonic stress in the region is compressive–both of which may be holding the magma back from erupting to the surface. So far, there have been no signs of ground swelling or outgassing at the surface, and the rate of earthquakes has slowed considerably this year from its peak of 7000 — 8000 micro-quakes per day in the fall of 2014.

Note: The above story is based on materials provided by Seismological Society of America.

More Americans at risk from strong earthquakes, says new report

More than 143 million Americans living in the 48 contiguous states are exposed to potentially damaging ground shaking from earthquakes, with as many as 28 million people likely to experience strong shaking during their lifetime, according to research discussed at the annual meeting of Seismological Society of America. The report puts the average long-term value of building losses from earthquakes at $4.5 billion per year, with roughly 80 percent of losses attributed to California, Oregon and Washington.

“This analysis of data from the new National Seismic Hazard Maps reveals that significantly more Americans are exposed to earthquake shaking, reflecting both the movement of the population to higher risk areas on the west coast and a change in hazard assessments,” said co-author Bill Leith, senior science advisor at USGS. By comparison, FEMA estimated in 1994 that 75 million Americans in 39 states were at risk from earthquakes.

Kishor Jaiswal, a research contractor with the U.S. Geological Survey (USGS), presented the research conducted with colleagues from USGS, FEMA and California Geological Survey. They analyzed the 2014 National Seismic Hazard Maps and the latest data on infrastructure and population from LandScan, a product of Oak Ridge National Laboratory.

The report focuses on the 48 contiguous states, where more than 143 million people are exposed to ground motions from earthquakes, but Leith noted that nearly half the U.S. population, or nearly 150 million Americans, are at risk of shaking from earthquakes when Alaska, Puerto Rico and Hawaii are also considered.

In the highest hazard zones, where 28 million Americans will experience strong shaking during their lifetime, key infrastructure could also experience a shaking intensity sufficient to cause moderate to extensive damage. The analysis identified more than 6,000 fire stations, more than 800 hospitals and nearly 20,000 public and private schools that may be exposed to strong ground motion from earthquakes.

Using the 2010 Census data and the 2012 replacement cost values for buildings, and using FEMA’s Hazus program, researchers calculated systematically the losses that could happen on any given year, ranging from no losses to a very high value of loss. However, the long-term average loss to the buildings in the contiguous U.S. is $4.5 billion per year, with most financial losses occurring in California, Oregon and Washington states.

“Earthquakes remain an important threat to our economy,” said Jaiswal. “While the west coast may carry the larger burden of potential losses and the greatest threat from the strongest shaking, this report shows that the threat from earthquakes is widespread.”

Note: The above story is based on materials provided by Seismological Society of America.

Earthquake potential where there is no earthquake history

It may seem unlikely that a large earthquake would take place hundreds of kilometers away from a tectonic plate boundary, in areas with low levels of strain on the crust from tectonic motion. But major earthquakes such as the Mw 7.9 2008 Chengdu quake in China and New Zealand’s 2011 Mw 6.3 quake have shown that large earthquakes do occur and can cause significant infrastructure damage and loss of life. So what should seismologists look for if they want to identify where an earthquake might happen despite the absence of historical seismic activity?

Roger Bilham of the University of Colorado shows that some of these regions had underlying features that could have been used to identify that the region was not as “aseismic” as previously thought. Some of these warning signs include debris deposits from past tsunamis or landslides, ancient mid-continent rifts that mark the scars of earlier tectonic boundaries, or old fault scarps worn down by hundreds or thousands of years of erosion.Earth’s populated area where there is no written history makes for an enormous “search grid” for earthquakes. For example, the Caribbean coast of northern Colombia resembles a classic subduction zone with the potential for tsunamigenic M>8 earthquakes at millennial time scales, but the absence of a large earthquake since 1492 is cause for complacency among local populations.

These areas are not only restricted to the Americas. Bilham notes that in many parts of Asia, where huge populations now reside and critical facilities exist or are planned, a similar historical silence exists. Parts of the Himalaya and central and western India that have not had any major earthquake in more than 500 years could experience shaking at levels and durations that are unprecedented in their written histories.

Note: The above story is based on materials provided by Seismological Society of America.

Race to unravel Oklahoma’s artificial quakes

It’s the first thing that geologist Todd Halihan asks on a sunny spring afternoon at Oklahoma State University in Stillwater: “Did you feel the earthquake? My mother-in-law just called to complain that the house was shaking.”

Halihan’s mother-in-law has been calling a lot lately. Fifteen quakes of magnitude 4 or greater struck in 2014 — packing more than a century’s worth of normal seismic activity for the state into a single year. Oklahoma had twice as many earthquakes last year as California — a seismic hotspot — and researchers are racing to understand why before the next major one strikes.

Whatever they learn will apply to seismic hazards worldwide. Oklahoma’s quakes have been linked to underground wells where oil and gas operations dispose of waste water, but mining, geothermal energy and other underground explorations have triggered earthquakes from South Africa to Switzerland. This week, at a meeting of the Seismological Society of America in Pasadena, California, scientists will discuss how the risk from human-induced quakes differs from that of natural quakes — and how society can prepare for it.

In Oklahoma, the earthquakes have unleashed a frenzy of finger-pointing, with angry residents suing oil and gas companies over damage to their homes. The industry and politicians are locked in fierce debates about whether the quakes are induced, but the unprecedented shaking across central and northern parts of the state matches almost exactly with the activity of water-disposal wells. “There are some who will argue that it is purely natural,” says Halihan. “But by now it’s pretty clear it’s not.”

Companies drill into the ground to extract oil and gas mixed with salt water, essentially the brine from a long-fossilized sea. They separate out the fuels and then inject the salt water into deep disposal wells (there are more than 4,600 in Oklahoma). State regulations require that the salt water be disposed of in rock layers below those that hold drinking water.

Stress fracture

Much of the liquid ends up in a rock formation called the Arbuckle, which underlies much of Oklahoma and is known for its ability to absorb huge volumes of water. But in many places the Arbuckle rests on brittle, ancient basement rocks, which can fracture along major faults under stress. “The deeper you inject, the more likely it is that the injected brine is going to make its way into a seismogenic fault zone, prone to producing earthquakes,” says Arthur McGarr, who leads research on induced quakes at the US Geological Survey (USGS) in Menlo Park, California.

Oil and gas companies operate disposal wells across the central United States, and although Oklahoma stands out for the sheer volume of waste water, other states may be getting triggered earthquakes. A report in Nature Communications this week, for example, links brine injection to a series of quakes that began in November 2013 near Azle, Texas.

The basic physics of the process has been understood since the 1970s, when scientists from the USGS pumped water down a well in Rangely, Colorado, and recorded how earthquake activity rose and petered out as they varied the amount of fluid. The question now is which faults are likely to rupture in Oklahoma, and how large an earthquake they might produce.

Whether a fault breaks in an earthquake depends on how it sits in relation to the stresses that compress Earth’s crust. The movement of tectonic plates is squeezing Oklahoma from east to west, so most of the earthquakes are happening along faults oriented northwest to southeast, or northeast to southwest. Other faults are less likely to rupture, says McGarr.

The biggest earthquake ever recorded in Oklahoma was a magnitude-5.6 event near the town of Prague in November 2011, and many seismologists think that it was induced by nearby disposal wells. Theoretical work suggests that the potential size of a quake grows with the volume of fluid injected into the ground. The biggest disposal wells in Oklahoma inject more than 60 million litres of waste water each month.

Austin Holland, the state seismologist at the Oklahoma Geological Survey in Norman, estimates that the chance of another earthquake of magnitude 5 or greater striking the state in the next year is about 30%. “That is not the kind of lottery we want to win,” he says.

Oklahoma has designated buffer zones, requiring extra scrutiny for disposal wells within 10 kilometres of sites of earthquake swarms or quakes of magnitude 4 or greater. As of 18 April, operators must also prove they are not injecting into or near basement rocks, or must cut their disposal volumes by half.

Yet oil and gas companies hold great political power in Oklahoma, and regulators continue to emphasize what they call uncertainty in linking injection wells to quakes. “We felt a big quake one Friday night and I knew we had permitted a brand-new Arbuckle disposal well not three miles from my house,” said Tim Baker, director of the oil and gas division of the Oklahoma Corporation Commission, which regulates drilling, at a town-hall meeting in suburban Oklahoma City this month. “I drove to that well to inspect it on Saturday morning, and it wasn’t even turned on. That’s how complex this issue is.”

The related — and controversial — technique of hydraulic fracturing, in which water is injected into rock to open cracks so oil and gas can flow more easily, has also been linked to earthquakes, but to a much lesser extent. The fracking involves injecting less water for shorter periods of time, and has not been tied to any earthquakes greater than magnitude 4 (ref. 5).

Seismic survey

One group of geologists wants to explore exactly how disposal wells might cause earthquakes. The team hopes to find a remote corner of Oklahoma and inject fluids deep underground while monitoring seismicity, in a modern analogue to the 1970s experiments in Colorado. “It’s a very ambitious goal, but we want to do a controlled field-scale experiment,” says Ze’ev Reches, a geophysicist at the University of Oklahoma in Norman and a co-leader of the project. But with Oklahomans already on edge, it is not clear whether the team could pull off such an experiment. So far, it remains hypothetical.

For now, seismologists are just trying to keep up with the quakes. The state geological survey recently gave up naming earthquake swarms, because the quakes simply never stopped, says Amberlee Darold, an agency seismologist. (The survey used to name swarms after nearby towns; it now identifies huge swathes of continuous activity by county.)

In the 15-storey brick Earth sciences building on the University of Oklahoma campus in Norman, statues celebrate the state’s ‘wild­catters’ who made it big in oil and gas, and a well-manicured garden nearby is dedicated to their achievements. Holland and Darold labour in the building’s dark basement, compiling a database of Oklahoma’s faults and trying to make sure that every earthquake is documented.

Many scientists are worried that the state’s buildings are not constructed to standards that consider seismic risk, and are concerned about how old brick-and-mortar structures would hold up in a large earthquake. The USGS issues national seismic-hazard maps every few years, but has never included the risk from induced quakes. This year, for the first time, the agency is developing induced-seismicity hazard maps for Oklahoma and surrounding states. The first of these is likely to be out by the end of 2015, says McGarr.

In Cushing, almost 60 kilometres north of Prague, crude-oil pipelines from across the continent meet. Fences topped with razor wire are meant to protect huge oil-storage tanks from a terrorist attack, but will not help if a major earthquake strikes, says Halihan.

In the meantime, he sits and waits to hear about the next quake. If he does not want to rely on his mother-in-law, Halihan can track the tremors by watching the movement of a small brass marker pinned to his office wall. It used to shake about once a week. Now it does so almost every day.

Note : The above story is based on materials provided by Nature.

Look mom, no eardrums! “Studying evolution beyond the fossil record”

(Left) Generalized schematic showing the relative position of the first pharyngeal pouch and elements in the first pharyngeal arch. The upper (green) and lower (blue) elements in the first pharyngeal arch form the primary jaw joint (red circle). (Top) Reptiles/birds. The schematic on the left shows the eardrum forming between the first pharyngeal pouch and the ear canal. It is connected to one middle ear bone and the quadrate bone (green), which is part of the upper jaw. The schematic on the right shows these bones in a lizard with the primary jaw joint located between the upper and lower jaws. (Bottom) Mammals. The schematic on the left shows the eardrum forming between the first pharyngeal pouch and the ear canal. It is connected to the hammer bone (blue), which along with the anvil (green) make up two of the three middle ear bones. The schematic on the right shows the middle ear in a human embryo, with the primary jaw joint located within the middle ear, and the hammer (blue) connected to the lower jaw. Credit: RIKEN

Researchers at the RIKEN Evolutionary Morphology Laboratory and the University of Tokyo in Japan have determined that the eardrum evolved independently in mammals and diapsids–the taxonomic group that includes reptiles and birds. Published in Nature Communications, the work shows that the mammalian eardrum depends on lower jaw formation, while that of diapsids develops from the upper jaw. Significantly, the researchers used techniques borrowed from developmental biology to answer a question that has intrigued paleontologists for years.

The evolution of the eardrum and the middle ear is what has allowed mammals, reptiles, and birds to hear through the air. Their eardrums all look similar, are formed when the ear canal reaches the first pharyngeal pouch, and function similarly. However the fossil record shows that the middle ears in these two lineages are fundamentally different, with two of the bones that make up the mammalian middle ear–the hammer and the anvil–being homologous with parts of diapsid jawbones–the articular and quadrate. In both lineages, these bones connect at what is called the primary jaw joint.

Although scientists have suspected that the eardrum–and thus hearing–developed independently in mammals and diapsids, no hard evidence has been found in the fossil record because the eardrum is never fossilized. To overcome this difficulty, the research team and their collaborators turned to evolutionary developmental biology–or “evo-devo.” They noted that in mammals, the eardrum attaches to the tympanic ring–a bone derived from the lower jaw, but that in diapsids it attaches to the quadrate–an upper jawbone. Hypothesizing that eardrum evolution was related to these different jawbones, they performed a series of experiments that manipulated lower jaw development in mice and chickens.

First they examined eardrum development in mice that lacked the Ednra receptor, a condition known to inhibit lower jaw development. They found that these mice also lacked eardrums and ear canals, showing that their development was contingent on lower jaw formation.

Next, they used an Ednra-receptor antagonist to block proper development of the lower jaw in chickens. Rather than losing the eardrum, this manipulation created duplicate eardrums and ear canals, with the additional set forming from upper jaw components that had developed within the malformed lower jaw.

To understand how the eardrum evolved twice and why it is associated with different jaw components, the researchers looked at expression of Bapxl–a marker for the primary jaw joint–and its position relative to the first pharyngeal pouch. They found that in mouse embryos, Bapxl was expressed in cells slightly below the first pharyngeal pouch and that in chickens it was expressed considerably lower. This difference forces the eardrum to develop below the primary jaw joint in mammals, necessitating an association with the lower jaw, and above the joint in diapsids, necessitating an association with the upper jaw.

While scientists still do not know how or why the primary jaw junction shifted upwards in mammals, the study shows that the middle ear developed after this shift and must therefore have occurred independently after mammal and diapsid lineages diverged from their common ancestor. Emphasizing the importance of this evo-devo approach, Chief Scientist Shigeru Kuratani notes that, “convergent evolution can often result in structures that resemble each other so much that they appear to be homologous. But, developmental analyses can often reveal their different origins.”

For structures like the eardrum that do not fossilize, the evo-devo approach is even more important. Lead author Masaki Takechi speculates that, “this approach to studying middle ear evolution could help us understand other related evolutionary changes in mammals, including the ability to detect higher toned sounds and even our greater metabolic efficiency.”

Reference:
Kitazawa T, Takechi M, Hirasawa T, Adachi N, Narboux-Neme N, Kume H, Maeda K, Hirai T, Miyagawa-Tomita S, Kurihara Y, Hitomi J, Levi G, Kuratani S, and Kurihara H. (2015) Developmental Genetic Bases behind the Independent Origin of the Tympanic Membrane in Mammals and Diapsids. Nature Communications. DOI:10.1038/ncomms7853

Note : The above story is based on materials provided by RIKEN.

Combination of gas field fluid injection and removal is most likely cause of 2013-14 earthquakes

Several natural and man-made factors can influence the subsurface stress regime resulting in earthquakes. Natural ones include intraplate stress changes related to plate tectonics and natural water table or lake level variations caused by changing weather patterns or water drainage patterns over time, or advance or retreat of glaciers. Man-made include human-generated changes to the water table, including dam construction, and industrial activities involving the injection or removal of fluids from the subsurface. Credit: Nature Communications/SMU

A seismology team led by Southern Methodist University (SMU), Dallas, finds that high volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes occurring near Azle, Texas, from late 2013 through spring 2014.
In an area where the seismology team identified two intersecting faults, they developed a sophisticated 3D model to assess the changing fluid pressure within a rock formation in the affected area. They used the model to estimate stress changes induced in the area by two wastewater injection wells and the more than 70 production wells that remove both natural gas and significant volumes of salty water known as brine.

Conclusions from the modeling study integrate a broad-range of estimates for uncertain subsurface conditions. Ultimately, better information on fluid volumes, flow parameters, and subsurface pressures in the region will provide more accurate estimates of the fluid pressure along this fault.

“The model shows that a pressure differential develops along one of the faults as a combined result of high fluid injection rates to the west and high water removal rates to the east,” said Matthew Hornbach, SMU associate professor of geophysics. “When we ran the model over a 10-year period through a wide range of parameters, it predicted pressure changes significant enough to trigger earthquakes on faults that are already stressed.”

Model-predicted stress changes on the fault were typically tens to thousands of times larger than stress changes associated with water level fluctuations caused by the recent Texas drought.

“What we refer to as induced seismicity — earthquakes caused by something other than strictly natural forces — is often associated with subsurface pressure changes,” said Heather DeShon, SMU associate professor of geophysics. “We can rule out stress changes induced by local water table changes. While some uncertainties remain, it is unlikely that natural increases to tectonic stresses led to these events.”

DeShon explained that some ancient faults in the region are more susceptible to movement — “near critically stressed” — due to their orientation and direction. “In other words, surprisingly small changes in stress can reactivate certain faults in the region and cause earthquakes,” DeShon said.

The study, “Causal Factors for Seismicity near Azle, Texas,” has been published online in the journal Nature Communications.

The study was produced by a team of scientists from SMU’s Department of Earth Sciences in Dedman College of Humanities and Sciences, the U.S. Geological Survey, the University of Texas Institute for Geophysics and the University of Texas Department of Petroleum and Geosystems Engineering. SMU scientists Hornbach and DeShon are the lead authors.

SMU seismologists have been studying earthquakes in North Texas since 2008, when the first series of felt tremors hit near DFW International Airport between Oct. 30, 2008, and May 16, 2009. Next came a series of quakes in Cleburne between June 2009 and June 2010, and this third series in the Azle-Reno area northwest of Fort Worth occurred between November 2013 and January 2014. The SMU team also is studying an ongoing series of earthquakes in the Irving-Dallas area that began in April 2014.

In both the DFW sequence and the Cleburne sequence, the operation of injection wells used in the disposal of natural gas production fluids was listed as a possible cause of the seismicity. The introduction of fluid pressure modeling of both industry activity and water table fluctuations in the Azle study represents the first of its kind, and has allowed the SMU team to move beyond assessment of possible causes to the most likely cause identified in this report.

Prior to the DFW Airport earthquakes in 2008, an earthquake large enough to be felt had not been reported in the North Texas area since 1950. The North Texas earthquakes of the last seven years have all occurred in areas developed for natural gas extraction from a geologic formation known as the Barnett Shale. The Texas Railroad Commission reports that production in the Barnett Shale grew exponentially from 216 million cubic feet a day in 2000, to 4.4 billion cubic feet a day in 2008, to a peak of 5.74 billion cubic feet of gas a day in 2012.

While the SMU Azle study adds to the growing body of evidence connecting some injection wells and, to a lesser extent, some oil and gas production to induced earthquakes, SMU’s team notes that there are many thousands of injection and/or production wells that are not associated with earthquakes.

The area of study addressed in the report is in the Newark East Gas Field (NEGF), north and east of Azle. In this field, hydraulic fracturing is applied to loosen and extract gas trapped in the Barnett Shale, a sedimentary rock formation formed approximately 350 million years ago. The report explains that along with natural gas, production wells in the Azle area of the NEGF can also bring to the surface significant volumes of water from the highly permeable Ellenburger Formation — both naturally occurring brine as well as fluids that were introduced during the fracking process.

Subsurface fluid pressures are known to play a key role in causing seismicity. A primer produced by the U.S. Department of Energy explains the interplay of fluids and faults:

“The fluid pressure in the pores and fractures of the rocks is called the ‘pore pressure.’ The pore pressure acts against the weight of the rock and the forces holding the rock together (stresses due to tectonic forces). If the pore pressures are low (especially compared to the forces holding the rock together), then only the imbalance of natural in situ earth stresses will cause an occasional earthquake. If, however, pore pressures increase, then it would take less of an imbalance of in situ stresses to cause an earthquake, thus accelerating earthquake activity. This type of failure…is called shear failure. Injecting fluids into the subsurface is one way of increasing the pore pressure and causing faults and fractures to “fail” more easily, thus inducing an earthquake. Thus, induced seismicity can be caused by injecting fluid into the subsurface or by extracting fluids at a rate that causes subsidence and/or slippage along planes of weakness in the earth.”

All seismic waveform data used in the compilation of the report are publically available at the IRIS Data Management Center. Wastewater injection, brine production and surface injection pressure data are publicly available at the Texas Railroad Commission (TRC). Craig Pearson at the TRC, Bob Patterson from the Upper Trinity Groundwater Conservation District; scientists at XTO Energy, ExxonMobil, MorningStar Partners and EnerVest provided valuable discussions and, in some instances, data used in the completion of the report.

“This report points to the need for even more study in connection with earthquakes in North Texas,” said Brian Stump, SMU’s Albritton Chair in Earth Sciences. “Industry is an important source for key data, and the scope of the research needed to understand these earthquakes requires government support at multiple levels.”

Reference:
Matthew J. Hornbach, Heather R. DeShon, William L. Ellsworth, Brian W. Stump, Chris Hayward, Cliff Frohlich, Harrison R. Oldham, Jon E. Olson, M. Beatrice Magnani, Casey Brokaw, James H. Luetgert. Causal factors for seismicity near Azle, Texas. Nature Communications, 2015; 6: 6728 DOI: 10.1038/ncomms7728

Note: The above story is based on materials provided by Southern Methodist University.

Related Articles