back to top
27.8 C
New York
Tuesday, October 8, 2024
Home Blog Page 32

The Le Teil earthquake provides new insights on seismic risk in France and Western Europe

Surface displacement mapped using InSAR satellite imaging data. Along the fault, the ground was either raised (southeast) or collapsed (northwest). The star designates the epicentre. Credit: Jean-François RITZ et al
Surface displacement mapped using InSAR satellite imaging data. Along the fault, the ground was either raised (southeast) or collapsed (northwest). The star designates the epicentre. Credit: Jean-François RITZ et al

On 11 November 2019, a magnitude 5 earthquake occurred near the village of Le Teil in the Rhône River Valley in southern France producing an unexpected surface rupture with ground displacement.

For the first time in France, the CNRS, IRSN, IRD, Université de Montpellier, Université Côte d’Azur and Terradue (1) had the opportunity to use all modern seismological, geodetical (2), and geological techniques available to study this historically unprecedented seismic event. The data, published on 27 August 2020 in Communications Earth & Environment, reveals that the earthquake was caused by the reactivation of the ancient La Rouvière fault. The fault formed during an extensional tectonic period some 20-30 million years ago during the Oligocene epoch, and was no longer considered to be active.

During the Le Teil earthquake, the fault experienced a reverse faulting movement (compression) with an average surface displacement of about 10cm both vertically and horizontally. Scientists estimate that the event nucleated at a shallow focal depth of approximately 1km, which explains why the rupture along the fault was able to reach the surface and cause considerable damage despite the moderate-magnitude (3) (the accurate position of the earthquake’s focus is presently being studied by another research team).

The results raise the possibility that other faults could be reactivated in France and Western Europe and produce surface displacements, whereas the risk of earthquakes with surface rupture was until now considered as highly improbable. To better assess the probability of such events, several teams of scientists in France are performing palaeoseismological investigations looking for evidence of past earthquakes along such faults.

Notes:

(1) Members of Géosciences Montpellier (CNRS/Université de Montpellier/Université des Antilles), Géoazur (CNRS/Observatoire de la Côte d’Azur/IRD/Université Côte d’Azur), Isterre (CNRS/IRD/Université Grenoble Alpes/Université Savoie Mont Blanc/Université Gustave Eiffel) laboratories participated in this study, along with IRSN (France) and the company Terradue (Italy).

(2) Geodesy is the study, usually with the aid of satellite observations, of the shape and deformations of the surface of the Earth.

(3) Only 10% of earthquakes of this magnitude cause surface rupture.

Reference:
Jean-François Ritz, Stéphane Baize, Matthieu Ferry, Christophe Larroque, Laurence Audin, Bertrand Delouis, Emmanuel Mathot. Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France. Communications Earth & Environment, 2020; 1 (1) DOI: 10.1038/s43247-020-0012-z

Note: The above post is reprinted from materials provided by CNRS.

A Bizarre Half Billion-Year Old Worm with Tentacles Solves Evolutionary Mystery

The fossil on the right is a complete specimen of Gyaltsenglossus senis (ROMIP 65606.1) showing full length of the proboscis with the six feeding arms at the top. Illustration by Emily S. Damstra. Both images © Royal Ontario Museum
Images: shows it as it would appear as it moved on the bottom of the ocean as it used its’ tentacles for feeding from the water above, while the background shows how it would feed with its’ base attached to the sea floor extended for upwards for feeding. The fossil on the right is a complete specimen of Gyaltsenglossus senis (ROMIP 65606.1) showing full length of the proboscis with the six feeding arms at the top. Illustration by Emily S. Damstra. Both images © Royal Ontario Museum

New research undertaken by scientists at the Smithsonian National Museum of Natural History, Royal Ontario Museum (ROM) and University of Montreal, has uncovered fossils of a new species of marine animal, Gyaltsenglossus senis, (pronounced Gen-zay-gloss-us senis) that provides new evidence in the historical debate among zoologists: how the anatomies of the two main types of an animal group called the hemichordates are related. The fossils are over half-a-billion years old and were discovered at a Burgess Shale site in the Canadian Rockies. This discovery was published August 27, 2020, in the science journal Current Biology.

With the early evolution of hemichordates being contentious among researchers the discovery of Gyaltsenglossus senis is significant. It provides direct fossil evidence connecting the two major groups of hemichordates: the enteropneusta and pterobranchia.

Although enteropneusts and pterobranchs appear to be quite different types of animals they are closely related. This close relationship is supported by DNA analysis of present-day species. More broadly, the role of Gyaltsenglossus in understanding hemichordate evolution helps us understand the origins of a larger group of animals called deuterostomes (which includes humans) by clarifying what characteristics they may have shared with hemichordates early in their history.

The enteropneusta are a group of animals known commonly as acorn worms, which are long, mostly mud-burrowing animals, that can be found today in oceans around the world from the tropics to Antarctic. The other main group of animals within hemichordates are pterobranchs, which are microscopic animals that live in colonies, each protected by tubes they construct and which feed on plankton using a crown of tentacled arms.

“Acorn worms and pterobranchs look so different from each other that understanding the origins of their evolutionary relationship has been a major historical question in zoology,” said Dr. Karma Nanglu, Peter Buck Deep Time post-doctoral fellow at the Smithsonian National Museum of Natural History and lead author on this paper. “Answering this question has been made much harder by the extreme lack of fossils of these soft-bodied hemichordates. Throughout the half-billion-year-long history of hemichordates you can count on one hand the number of exceptional preserved fossil species.”

Despite being just two centimeters in length, the remarkably preserved soft tissues of the Gyaltsenglossus fossils reveal incredibly detailed anatomical structures. These details include the oval-shaped proboscis of acorn worms and a basket of feeding tentacles similar to those of pterobranchs. The age of these fossils, combined with the unique morphological combination of the two major hemichordate groups, makes this discovery a critical find for understanding early hemichordate evolution.

“An ancient animal with an intermediary anatomy between acorn worms and pterobranchs had been hypothesized before but this new animal is the clearest view of what the ancestral hemichordate may have looked like,” says Dr. Christopher Cameron, Associate Professor at the University of Montreal and a co-author on this study. “It’s exciting to have so many new anatomical details to help drive new hypotheses about hemichordate evolution.”

In the case of Gyaltsenglossus, the exceptional preservation of these fine details can be attributed to the unique environmental conditions of the Burgess Shale, which rapidly entombed ancient animals in underwater mudslides. Through a combination of factors, including slowing the rate of bacteria decaying the entombed animals’ bodies, the fossils of the Burgess Shale are preserved with far greater fidelity than typical fossil sites.

“The Burgess Shale has been pivotal in understanding early animal evolution since its discovery over 100 years ago,” says co-author Dr. Jean-Bernard Caron, Richard M. Ivey Curator of Invertebrate Palaeontology at the ROM and Associate Professor at the University of Toronto. Dr. Caron led the field expedition in 2010 which collected the 33 fossils of Gyaltsenglossus.

“In most localities, you would be lucky to have the hardest parts of animals, like bones and teeth, preserved, but at the Burgess Shale even the softest body parts can be fossilized in exquisite detail,” says Dr. Caron. “This new species underscores the importance of making new fossil discoveries to shine light on the most stubborn evolutionary mysteries.”

In this particular case, Gyaltsenglossus suggests that the ancestral hemichordate may have been able to use the feeding strategies of both of the modern groups. Like acorn worms, the long proboscis may have been used to feed on nutrient-filled marine mud, while at the same time, and like the pterobranchs, the array of six feeding arms was probably used to grab suspended food particles directly from the water above where it was crawling.

Hemichordates belong to a major division of animal life called Deuterostomia, which includes chordates like fish and mammals, and not the division of animal life called Protostomia, that includes arthropods such as insects and annelids such as earthworms. Dr. Nanglu explains, when looking at Gyaltsenglossus, we’re actually looking at a very, very distant relative of our own branch of vertebrate and human evolution.

“The close relationship between hemichordates and our own evolutionary group, the chordates, is one of the first things that made me excited to research them,” Nanglu explains. “Understanding the ancient connections that join animals like fish and even humans to their distant cousins like sea urchins and acorn worms is such an interesting area on the evolutionary tree and Gyaltsenglossus helps bring that link into focus a little bit more clearly.”

The original 1909 discovery and research about the Burgess Shale was made by Charles Walcott, who was Secretary of the Smithsonian Institution at the time. The Burgess Shale fossil sites are located within Yoho and Kootenay National Parks and are managed by Parks Canada.

Reference:
Cambrian Tentaculate Worms and the Origin of the Hemichordate Body Plan . Current Biology (2020). DOI: 10.1016/j.cub.2020.07.078

Note: The above post is reprinted from materials provided by Royal Ontario Museum.

First 3D look at an embryonic sauropod dinosaur reveals unexpected facial features

The Titanosaurian embryo skull along with a skull and head reconstruction. Credit: Kundrat et al. /Current Biology
The Titanosaurian embryo skull along with a skull and head reconstruction. Credit: Kundrat et al. /Current Biology

About 25 years ago, researchers discovered the first dinosaur embryos in an enormous nesting ground of titanosaurian dinosaurs that lived about 80 million years ago in a place known as Auca Mahuevo in Patagonia, Argentina. Now, researchers reporting in the journal Current Biology on August 27 describe the first near-intact embryonic skull. The finding adds to our understanding of the development of sauropod dinosaurs, a group characterized by the long neck and tails and small heads perhaps most familiar in the Brontosaurus, and suggests that they may have had specialized facial features as hatchlings that changed as they grew into adults.

“The specimen studied in our paper represents the first 3-D preserved embryonic skull of a sauropod sauropodomorph,” says Martin Kundrat of the PaleoBioImaging Lab at Pavol Jozef Šafárik University, Slovak Republic. “The most striking feature is head appearance, which implies that hatchlings of giant dinosaurs may differ in where and how they lived in their earliest stages of life. But because it differs in facial anatomy and size from the sauropod embryos of Auca Mahuevo, we cannot rule out that it may represent a new titanosaurian dinosaur.”

The new embryonic dinosaur specimen also is from Patagonia, although its precise origin isn’t known. That’s because the egg was illegally exported from the country and brought to researchers’ attention only later. When Terry Manning, a co-author on the study from Arizona, realized the unique preservation and scientific importance of the specimen, he agreed to send this unique fossil back to Argentina for further study. It’s now housed with other titanosaurian embryos from Auca Mahuevo under curation of Rodolfo Coria at the Museo Municipal Carmen Funes in Plaza Huincul.

In the new study, Kundrat’s team used a new imaging technology called synchrotron microtomography to study the inner structure of bones, teeth, and soft tissues of the embryonic dinosaur. The scans allowed Kundrat and co-author Daniel Snitting, Uppsala University, Sweden, to find hidden details, including tiny teeth preserved deeply in tiny jaw sockets. They also found partly calcified elements of the embryonic braincase and what appear to be the remains of temporal muscles.

The scans allowed the researchers to reconstruct the most plausible appearance of the skull in titanosaurian sauropods before hatching. Those details are useful for taxonomic or developmental comparisons among related dinosaurs.

The findings also suggest that the baby sauropods may have hatched out of the egg with the help of a thickened prominence rather than a boney “egg-tooth.” They uncovered evidence as well that the embryonic dinosaurs used calcium derived from the eggshell long before they were ready to hatch.

They report that the titanosaurian hatchlings emerged with a temporary moncerotid (single-horned) face. They also had retracted openings on the nose (nares) and early binocular vision. “We suggest an alternative head appearance for babies of these Patagonian giants,” Kundrat says.

The findings suggest that the young sauropods had a specialized head and face that transformed as the young dinosaurs grew and matured into adults. The findings have implications for our understanding of the dinosaurs and how they lived, the researchers say. “Dinosaur eggs are for me like time capsules that bring a message from the ancient time,” Kundrat says. “This was the case of our specimen that tells a story about Patagonian giants before they hatched.

“Our study revealed several new aspects about the embryonic life of the largest herbivorous dinosaurs that lived on our planet,” he adds. “A horned faced and binocular vision are features quite different from what we expected in titanosaurian dinosaurs.”

Kundrat says he’ll continue to study embryonic dinosaurs from other continents using the synchrotron technology.

Reference:
Current Biology, Kundrat et al.: “Specialized Craniofacial Anatomy of a Titanosaurian Embryo from Argentina” DOI: 10.1016/j.cub.2020.07.091

Note: The above post is reprinted from materials provided by Cell Press.

Fossil evidence of ‘hibernation-like’ state in 250-million-year-old Antarctic animal

Life restoration of Lystrosaurus in a state of torpor. Credit: Crystal ShinLife restoration of Lystrosaurus in a state of torpor. Credit: Crystal Shin
Life restoration of Lystrosaurus in a state of torpor. Credit: Crystal Shin

Hibernation is a familiar feature on Earth today. Many animals — especially those that live close to or within polar regions — hibernate to get through the tough winter months when food is scarce, temperatures drop and days are dark.

According to new research, this type of adaptation has a long history. In a paper published Aug. 27 in the journal Communications Biology, scientists at the University of Washington and its Burke Museum of Natural History and Culture report evidence of a hibernation-like state in an animal that lived in Antarctica during the Early Triassic, some 250 million years ago.

The creature, a member of the genus Lystrosaurus, was a distant relative of mammals. Antarctica during Lystrosaurus’ time lay largely within the Antarctic Circle, like today, and experienced extended periods without sunlight each winter.

The fossils are the oldest evidence of a hibernation-like state in a vertebrate animal, and indicates that torpor — a general term for hibernation and similar states in which animals temporarily lower their metabolic rate to get through a tough season — arose in vertebrates even before mammals and dinosaurs evolved.

“Animals that live at or near the poles have always had to cope with the more extreme environments present there,” said lead author Megan Whitney, a postdoctoral researcher at Harvard University who conducted this study as a UW doctoral student in biology. “These preliminary findings indicate that entering into a hibernation-like state is not a relatively new type of adaptation. It is an ancient one.”

Lystrosaurus lived during a dynamic period of our planet’s history, arising just before Earth’s largest mass extinction at the end of the Permian Period — which wiped out about 70% of vertebrate species on land — and somehow surviving it. The stout, four-legged foragers lived another 5 million years into the subsequent Triassic Period and spread across swathes of Earth’s then-single continent, Pangea, which included what is now Antarctica.

“The fact that Lystrosaurus survived the end-Permian mass extinction and had such a wide range in the early Triassic has made them a very well-studied group of animals for understanding survival and adaptation,” said co-author Christian Sidor, a UW professor of biology and curator of vertebrate paleontology at the Burke Museum.

Paleontologists today find Lystrosaurus fossils in India, China, Russia, parts of Africa and Antarctica. These squat, stubby, creatures — most were roughly pig-sized, but some grew 6 to 8 feet long — had no teeth but bore a pair of tusks in the upper jaw, which they likely employed to forage among ground vegetation and dig for roots and tubers, according to Whitney.

Those tusks made Whitney and Sidor’s study possible. Like elephants, Lystrosaurus tusks grew continuously throughout their lives. The cross-sections of fossilized tusks can harbor life-history information about metabolism, growth and stress or strain. Whitney and Sidor compared cross-sections of tusks from six Antarctic Lystrosaurus to cross-sections of four Lystrosaurus from South Africa.

Back in the Triassic, the collection sites in Antarctica were at about 72 degrees south latitude — well within the Antarctic Circle, at 66.3 degrees south. The collection sites in South Africa were more than 550 miles north during the Triassic at 58-61 degrees south latitude, far outside the Antarctic Circle.

The tusks from the two regions showed similar growth patterns, with layers of dentine deposited in concentric circles like tree rings. But the Antarctic fossils harbored an additional feature that was rare or absent in tusks farther north: closely-spaced, thick rings, which likely indicate periods of less deposition due to prolonged stress, according to the researchers.

“The closest analog we can find to the ‘stress marks’ that we observed in Antarctic Lystrosaurus tusks are stress marks in teeth associated with hibernation in certain modern animals,” said Whitney.

The researchers cannot definitively conclude that Lystrosaurus underwent true hibernation — which is a specific, weeks-long reduction in metabolism, body temperature and activity. The stress could have been caused by another hibernation-like form of torpor, such as a more short-term reduction in metabolism, according to Sidor.

Lystrosaurus in Antarctica likely needed some form of hibernation-like adaptation to cope with life near the South Pole, said Whitney. Though Earth was much warmer during the Triassic than today — and parts of Antarctica may have been forested — plants and animals below the Antarctic Circle would still experience extreme annual variations in the amount of daylight, with the sun absent for long periods in winter.

Many other ancient vertebrates at high latitudes may also have used torpor, including hibernation, to cope with the strains of winter, Whitney said. But many famous extinct animals, including the dinosaurs that evolved and spread after Lystrosaurus died out, don’t have teeth that grow continuously.

“To see the specific signs of stress and strain brought on by hibernation, you need to look at something that can fossilize and was growing continuously during the animal’s life,” said Sidor. “Many animals don’t have that, but luckily Lystrosaurus did.”

If analysis of additional Antarctic and South African Lystrosaurus fossils confirms this discovery, it may also settle another debate about these ancient, hearty animals.

“Cold-blooded animals often shut down their metabolism entirely during a tough season, but many endothermic or ‘warm-blooded’ animals that hibernate frequently reactivate their metabolism during the hibernation period,” said Whitney. “What we observed in the Antarctic Lystrosaurus tusks fits a pattern of small metabolic ‘reactivation events’ during a period of stress, which is most similar to what we see in warm-blooded hibernators today.”

If so, this distant cousin of mammals isn’t just an example of a hearty creature. It is also a reminder that many features of life today may have been around for hundreds of millions of years before humans evolved to observe them.

The research was funded by the National Science Foundation.

Reference:
Megan R. Whitney, Christian A. Sidor. Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica. Communications Biology, 2020; 3 (1) DOI: 10.1038/s42003-020-01207-6

Note: The above post is reprinted from materials provided by University of Washington. Original written by James Urton.

Scelidosaurus : First complete dinosaur skeleton ever found is ready for its closeup at last

The first complete dinosaur skeleton ever identified has finally been studied in detail and found its place in the dinosaur family tree, completing a project that began more than a century and a half ago. Credit: John Sibbick
The first complete dinosaur skeleton ever identified has finally been studied in detail and found its place in the dinosaur family tree, completing a project that began more than a century and a half ago. Credit: John Sibbick

The first complete dinosaur skeleton ever identified has finally been studied in detail and found its place in the dinosaur family tree, completing a project that began more than a century and a half ago.

The skeleton of this dinosaur, called Scelidosaurus, was collected more than 160 years ago on west Dorset’s Jurassic Coast. The rocks in which it was fossilised are around 193 million years old, close to the dawn of the Age of Dinosaurs.

This remarkable specimen—the first complete dinosaur skeleton ever recovered—was sent to Richard Owen at the British Museum, the man who invented the word dinosaur.

So, what did Owen do with this find? He published two short papers on its anatomy, but many details were left unrecorded. Owen did not reconstruct the animal as it might have appeared in life and made no attempt to understand its relationship to other known dinosaurs of the time. In short, he ‘re-buried’ it in the literature of the time, and so it has remained ever since: known, yet obscure and misunderstood.

Over the past three years, Dr. David Norman from Cambridge’s Department of Earth Sciences has been working to finish the work which Owen started, preparing a detailed description and biological analysis of the skeleton of Scelidosaurus, the original of which is stored at the Natural History Museum in London, with other specimens at Bristol City Museum and the Sedgwick Museum, Cambridge.

The results of Norman’s work, published as four separate studies in the Zoological Journal of the Linnean Society of London, not only reconstruct what Scelidosaurus looked like in life, but reveal that it was an early ancestor of ankylosaurs, the armour-plated ‘tanks’ of the Late Cretaceous Period.

For more than a century, dinosaurs were primarily classified according to the shape of their hip bones: they were either saurischians (‘lizard-hipped’) or ornithischians (‘bird-hipped’).

However, in 2017, Norman and his former Ph.D. students Matthew Baron and Paul Barrett argued that these dinosaur family groupings needed to be rearranged, re-defined and re-named. In a study published in Nature, the researchers suggested that bird-hipped dinosaurs and lizard-hipped dinosaurs such as Tyrannosaurus evolved from a common ancestor, potentially overturning more than a century of theory about the evolutionary history of dinosaurs.

Another fact that emerged from their work on dinosaur relationships was that the earliest known ornithischians first appeared in the Early Jurassic Period. “Scelidosaurus is just such a dinosaur and represents a species that appeared at, or close to, the evolutionary ‘birth’ of the Ornithischia,” said Norman, who is a Fellow of Christ’s College, Cambridge. “Given that context, what was actually known of Scelidosaurus? The answer is remarkably little!”

Norman has now completed a study of all known material attributable to Scelidosaurus and his research has revealed many firsts.

“Nobody knew that the skull had horns on its back edge,” said Norman. “It had several bones that have never been recognised in any other dinosaur. It’s also clear from the rough texturing of the skull bones that it was, in life, covered by hardened horny scutes, a little bit like the scutes on the surface of the skulls of living turtles. In fact, its entire body was protected by skin that anchored an array of stud-like bony spikes and plates.”

Now that its anatomy is understood, it is possible to examine where Scelidosaurus sits in the dinosaur family tree. It had been regarded for many decades as an early member of the group that included the stegosaurs, including Stegosaurus with its huge bony plates along its spine and a spiky tail, and ankylosaurs, the armour-plated ‘tanks’ of the dinosaur era, but that was based on a poor understanding of the anatomy of Scelidosaurus. Now it seems that Scelidosaurus is an ancestor of the ankylosaurs alone.

“It is unfortunate that such an important dinosaur, discovered at such a critical time in the early study of dinosaurs, was never properly described,” said Norman. “It has now—at last! – been described in detail and provides many new and unexpected insights concerning the biology of early dinosaurs and their underlying relationships. It seems a shame that the work was not done earlier but, as they say, better late than never.”

Reference:
David B Norman, Scelidosaurus harrisonii (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: biology and phylogenetic relationships, Zoological Journal of the Linnean Society (2020). DOI: 10.1093/zoolinnean/zlaa061

Note: The above post is reprinted from materials provided by University of Cambridge.

The age of Earth’s inner core revised

Earth
Scientists are finding that Earth’s mantle may have generated the planet’s early magnetic field. Credit: Naeblys

By creating conditions akin to the center of the Earth inside a laboratory chamber, researchers have improved the estimate of the age of our planet’s solid inner core, putting it at 1 billion to 1.3 billion years old.

The results place the core at the younger end of an age spectrum that usually runs from about 1.3 billion to 4.5 billion years, but they also make it a good bit older than a recent estimate of only 565 million years.

What’s more, the experiments and accompanying theories help pin down the magnitude of how the core conducts heat, and the energy sources that power the planet’s geodynamo — the mechanism that sustains the Earth’s magnetic field, which keeps compasses pointing north and helps protect life from harmful cosmic rays.

“People are really curious and excited about knowing about the origin of the geodynamo, the strength of the magnetic field, because they all contribute to a planet’s habitability,” said Jung-Fu Lin, a professor at The University of Texas at Austin’s Jackson School of Geosciences who led the research.

The results were published on Aug.13 in the journal Physical Review Letters.

The Earth’s core is made mostly of iron, with the inner core being solid and the outer core being liquid. The effectiveness of the iron in transferring heat through conduction — known as thermal conductivity — is key to determining a number of other attributes about the core, including when the inner core formed.

Over the years, estimates for core age and conductivity have gone from very old and relatively low, to very young and relatively high. But these younger estimates have also created a paradox, where the core would have had to reach unrealistically high temperatures to maintain the geodynamo for billions of years before the formation of the inner core.

The new research solves that paradox by finding a solution that keeps the temperature of the core within realistic parameters. Finding that solution depended on directly measuring the conductivity of iron under corelike conditions — where pressure is greater than 1 million atmospheres and temperatures can rival those found on the surface of the sun.

The researchers achieved these conditions by squeezing laser-heated samples of iron between two diamond anvils. It wasn’t an easy feat. It took two years to get suitable results.

“We encountered many problems and failed several times, which made us frustrated, and we almost gave up,” said article co-author Youjun Zhang, an associate professor at Sichuan University in China. “With the constructive comments and encouragement by professor Jung-Fu Lin, we finally worked it out after several test runs.”

The newly measured conductivity is 30% to 50% less than the conductivity of the young core estimate, and it suggests that the geodynamo was maintained by two different energy sources and mechanisms: thermal convection and compositional convection. At first the geodynamo was maintained by thermal convection alone. Now, each mechanism plays about an equally important role.

Lin said that with this improved information on conductivity and heat transfer over time, the researchers could make a more precise estimate of the age of the inner core.

“Once you actually know how much of that heat flux from the outer core to the lower mantle, you can actually think about when did the Earth cool sufficiently to the point that the inner core starts to crystalize,” he said.

This revised age of the inner core could correlate with a spike in the strength of the Earth’s magnetic field as recorded by the arrangement of magnetic materials in rocks that were formed around this time. Together, the evidence suggests that the formation of the inner core was an essential part of creating today’s robust magnetic fields.

The National Science Foundation and the National Natural Science Foundation of China supported the research.

Reference:
Youjun Zhang, Mingqiang Hou, Guangtao Liu, Chengwei Zhang, Vitali B. Prakapenka, Eran Greenberg, Yingwei Fei, R. E. Cohen, Jung-Fu Lin. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo. Physical Review Letters, 2020; 125 (7) DOI: 10.1103/PhysRevLett.125.078501

Note: The above post is reprinted from materials provided by University of Texas at Austin.

Ichthyosaur’s last meal is evidence of Triassic megapredation

Closeup of the stomach area of a fossil ichthyosaur, Guizhouichthyosaurus, showing part of the body of another large marine reptile. The ichthyosaur had swallowed its prey shortly before it died and was fossilized. This is the oldest known direct evidence of megapredation, or a large animal eating another large animal. (Da-Yong Jiang, et al.)
Closeup of the stomach area of a fossil ichthyosaur, Guizhouichthyosaurus, showing part of the body of another large marine reptile. The ichthyosaur had swallowed its prey shortly before it died and was fossilized. This is the oldest known direct evidence of megapredation, or a large animal eating another large animal. (Da-Yong Jiang, et al.)

Some 240 million years ago, a dolphin-like ichthyosaur ripped to pieces and swallowed another marine reptile only a little smaller than itself. Then it almost immediately died and was fossilized, preserving the first evidence of megapredation, or a large animal preying on another large animal. The fossil, discovered in 2010 in southwestern China, is described in a paper published Aug. 20 in the journal iScience.

The ichthyosaurs were a group of marine reptiles that appeared in the oceans after the Permian mass extinction, about 250 million years ago. They had fish-like bodies similar to modern tuna, but breathed air like dolphins and whales. Like modern orca or great white sharks, they may have been apex predators of their ecosystems, but until recently there has been little direct evidence of this.

When a specimen of the ichthyosaur Guizhouichthyosaurus was discovered in Guizhou province, China in 2010, researchers noticed a large bulge of other bones within the animal’s abdomen. On examination, they identified the smaller bones as belonging to another marine reptile, Xinpusaurus xingyiensis, which belonged to a group called thalattosaurs. Xinpusaurus was more lizard-like in appearance than an ichthyosaur, with four paddling limbs.

“We have never found articulated remains of a large reptile in the stomach of gigantic predators from the age of dinosaurs, such as marine reptiles and dinosaurs,” said Ryosuke Motani, professor of earth and planetary sciences at the University of California, Davis, and coauthor on the paper. “We always guessed from tooth shape and jaw design that these predators must have fed on large prey but now we have direct evidence that they did.”

The Guizhouichthyosaurus was almost five meters (15 feet) long, while the researchers calculate its prey was about four meters (12 feet) long, although thalattosaurs had skinnier bodies than ichythyosaurs. The predator’s last meal appears to be the middle section of the thalattosaur, from its front to back limbs. Interestingly, a fossil of what appears to be the tail section of the animal was found nearby.

Predators that feed on large animals are often assumed to have large teeth adapted for slicing up prey. Guizhouichthyosaurus had relatively small, peg-like teeth, which were thought to be adapted for grasping soft prey such as the squid-like animals abundant in the oceans at the time. However, it’s clear that you don’t need slicing teeth to be a megapredator, Motani said. Guizhouichthyosaurus probably used its teeth to grip the prey, perhaps breaking the spine with the force of its bite, then ripped or tore the prey apart. Modern apex predators such as orca, leopard seals and crocodiles use a similar strategy.

Reference:
Da-Yong Jiang, Ryosuke Motani, Andrea Tintori, Olivier Rieppel, Cheng Ji, Min Zhou, Xue Wang, Hao Lu, Zhi-Guang Li. Evidence Supporting Predation of 4-m Marine Reptile by Triassic Megapredator. iScience, 2020; 101347 DOI: 10.1016/j.isci.2020.101347

Note: The above post is reprinted from materials provided by University of California – Davis. Original written by Andy Fell.

How dinosaur research can help medicine

Vertebrae from the torso of the long-necked dinosaur “Arapahoe”:
This dinosaur skeleton, at 27 meters the longest ever exhibited in Europe, is currently on display at the Museum Koenig in Bonn. The ball-and-socket joint between two vertebrae can be seen next to the measuring tape. Credit: Martin Sander/Uni Bonn

The intervertebral discs connect the vertebrae and give the spine its mobility. The disc consists of a cartilaginous fibrous ring and a gelatinous core as a buffer. It has always been assumed that only humans and other mammals have discs. A misconception, as a research team under the leadership of the University of Bonn has now discovered: Even Tyrannosaurus rex could have suffered a slipped disc. The results have now been published in the journal “Scientific Reports.”

Present-day snakes and other reptiles do not have intervertebral discs; instead, their vertebrae are connected with so-called ball-and-socket joints. Here, the ball-shaped end surface of a vertebra fits into a cup-shaped depression of the adjacent vertebra, similar to a human hip joint. In-between there is cartilage and synovial fluid to keep the joint mobile. This evolutionary construction is good for today’s reptiles, because it prevents the dreaded slipped disc, which is caused by parts of the disc slipping out into the spinal canal.

“I found it hard to believe that ancient reptiles did not have intervertebral discs,” says paleontologist Dr. Tanja Wintrich from the Section Paleontology in the Institute of Geosciences of the University of Bonn. She noticed that the vertebrae of most dinosaurs and ancient marine reptiles look very similar to those of humans — that is, they do not have ball-and-socket joints. She therefore wondered whether extinct reptiles had intervertebral discs, but had “replaced” these with ball-and-socket joints in the course of evolution.

Comparison of the vertebrae of dinosaurs with animals still alive today

To this end, the team of researchers led by Tanja Wintrich and with the participation of the University of Cologne and the TU Bergakademie Freiberg as well as researchers from Canada and Russia examined a total of 19 different dinosaurs, other extinct reptiles, and animals still alive today. The researchers concluded that intervertebral discs not only occur in mammals. For these investigations, vertebrae still in connection were analyzed using various methods.

Surprisingly, Dr. Wintrich has now also been able to demonstrate that remnants of cartilage and even other parts of the intervertebral disc are almost always preserved in such ancient specimens, including marine reptiles like ichthyosaurs and dinosaurs like Tyrannosaurus. She then traced the evolution of the soft tissues between the vertebrae along the family tree of land animals, which 310 million years ago split into the mammalian line and the dinosaur and bird line.

Intervertebral discs emerged several times during evolution

It was previously unknown that intervertebral discs are a very ancient feature. The findings also show that intervertebral discs evolved several times during evolution in different animals, and were probably replaced by ball-and-socket joints twice in reptiles. “The reason why the intervertebral disc was replaced might be that it is more susceptible to damage than a ball-and-socket joint,” says Dr. Wintrich. Nonetheless, mammals have always retained intervertebral discs, repeating the familiar pattern that they are rather limited in their evolutionary flexibility. “This insight is also central to the medical understanding of humans. The human body is not perfect, and its diseases reflect our long evolutionary history,” adds paleontologist Prof. Dr. Martin Sander from the University of Bonn.

In terms of research methods, the team drew not only on paleontology, but also on medical anatomy, developmental biology and zoology. Under the microscope, dinosaur bones cut with a rock saw and then ground very thinly provide information comparable to histological sections of fixed and embedded tissue of extant animals. This makes it possible to bridge the long periods of evolution and identify developmental processes. Prof. Sander remarks: “It’s truly amazing that the cartilage of the joint and apparently even the disc itself can survive for hundreds of millions of years.”

Dr. Wintrich, who now works at the Institute of Anatomy of the University of Bonn, is pleased about the cooperation between the fields that has made this interdisciplinary understanding possible in the first place: “We found that even Tyrannosaurus rex was not protected against slipped discs.” Only bird-like predatory dinosaurs then evolved ball-and-socket joints as well and saddle joints, still seen in today’s birds. Likewise, such ball-and-socket joints were a decisive advantage for the stability of the spine of the largest dinosaurs, the long-necked dinosaurs.

This bridge between paleontology and medicine is seminal in Germany. The anatomist Prof. Dr. Karl Schilling from the University of Bonn, who was not involved in the new study, reports: “In the USA, in contrast, dinosaur researchers and evolutionary biologists are often closely involved in medical training, especially in anatomy and embryology. This gives young doctors a perspective that is becoming increasingly important in a rapidly changing environment.”

Reference:
Tanja Wintrich, Martin Scaal, Christine Böhmer, Rico Schellhorn, Ilja Kogan, Aaron van der Reest, P. Martin Sander. Palaeontological evidence reveals convergent evolution of intervertebral joint types in amniotes. Scientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-70751-2

Note: The above post is reprinted from materials provided by University of Bonn.

Cliff collapse reveals 313-million-year-old fossil footprints in Grand Canyon National Park

Manakacha Trackway. Credit: Stephen Rowland
Manakacha Trackway. Credit: Stephen Rowland

Paleontological research has confirmed a series of recently discovered fossils tracks are the oldest recorded tracks of their kind to date within Grand Canyon National Park. In 2016, Norwegian geology professor, Allan Krill, was hiking with his students when he made a surprising discovery. Lying next to the trail, in plain view of the many hikers, was a boulder containing conspicuous fossil footprints. Krill was intrigued, and he sent a photo to his colleague, Stephen Rowland, a paleontologist at the University of Nevada Las Vegas.

The trailside tracks have turned out to be even more significant than Krill first imagined. “These are by far the oldest vertebrate tracks in Grand Canyon, which is known for its abundant fossil tracks” says Rowland. “More significantly,” he added, “they are among the oldest tracks on Earth of shelled-egg-laying animals, such as reptiles, and the earliest evidence of vertebrate animals walking in sand dunes.”

The track-bearing boulder fell from a nearby cliff-exposure of the Manakacha Formation. The presence of a detailed geologic map of the strata along the Bright Angel Trail, together with previous studies of the age of the Manakacha Formation, allowed the researchers to pin down the age of the tracks quite precisely to 313 +/- 0. 5 million years.

The newly discovered tracks record the passage of two separate animals on the slope of a sand dune. Of interest to the research team is the distinct arrangement of footprints. The researchers’ reconstruction of this animal’s footfall sequence reveals a distinctive gait called a lateral-sequence walk, in which the legs on one side of the animal move in succession, the rear leg followed by the foreleg, alternating with the movement of the two legs on the opposite side. “Living species of tetrapods―dogs and cats, for example―routinely use a lateral-sequence gait when they walk slowly,” says Rowland. “The Bright Angel Trail tracks document the use of this gait very early in the history of vertebrate animals. We previously had no information about that.” Also revealed by the trackways is the earliest-known utilization of sand dunes by vertebrate animals.

Reference:
Stephen M. Rowland, Mario V. Caputo, Zachary A. Jensen. Early adaptation to eolian sand dunes by basal amniotes is documented in two Pennsylvanian Grand Canyon trackways. PLOS ONE, 2020; 15 (8): e0237636 DOI: 10.1371/journal.pone.0237636

Note: The above post is reprinted from materials provided by National Park Service.

Dinosaurs’ unique bone structure key to carrying weight

The structure of the trabecular, or spongy bone that forms in the interior of bones, is unique within dinosaurs, according to a recent study by SMU paleontologists and others.
The structure of the trabecular, or spongy bone that forms in the interior of bones, is unique within dinosaurs, according to a recent study by SMU paleontologists and others.

Weighing up to 8,000 pounds, hadrosaurs, or duck-billed dinosaurs were among the largest dinosaurs to roam the Earth. How did the skeletons of these four-legged, plant-eating dinosaurs with very long necks support such a massive load?

New research recently published in PLOS ONE offers an answer. A unique collaboration between paleontologists, mechanical engineers and biomedical engineers revealed that the trabecular bone structure of hadrosaurs and several other dinosaurs is uniquely capable of supporting large weights, and different than that of mammals and birds.

“The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,” said Tony Fiorillo, SMU paleontologist and one of the study authors. The trabecular bone tissue surrounds the tiny spaces or holes in the interior part of the bone, Fiorillo says, such as what you might see in a ham or steak bone.

“Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase,” he says. “Instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.”

The interdisciplinary team of researchers used engineering failure theories and allometry scaling, which describes how the characteristics of a living creature change with size, to analyze CT scans of the distal femur and proximal tibia of dinosaur fossils.

The team, funded by the National Science Foundation Office of Polar Programs and the National Geographic Society, is the first to use these tools to better understand the bone structure of extinct species and the first to assess the relationship between bone architecture and movement in dinosaurs. They compared their findings to scans of living animals, such as Asian elephants and extinct mammals such as mammoths.

“Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,” said Trevor Aguirre, lead author of the paper and a recent mechanical engineering Ph.D. graduate of Colorado State University.

The idea for the study began ten years ago, when Seth Donahue, now a University of Massachusetts biomedical engineer and expert on animal bone structure, was invited to attend an Alaskan academic conference hosted by Fiorillo and other colleagues interested in understanding dinosaurian life in the ancient Arctic. That’s where Fiorillo first learned of Donahue’s use of CT scans and engineering theories to analyze the bone structure of modern animals.

“In science we rarely have lightning bolt or ‘aha’ moments,” Fiorillo says. “Instead we have, ‘huh?’ moments that often are not close to what we envisioned, but instead create questions of their own.”

Applying engineering theories to analyze dinosaur fossils and the subsequent new understanding of dinosaurs’ unique adaptation to their huge size grew from the ‘huh?’ moment at that conference.

Reference:
Trevor G. Aguirre, Aniket Ingrole, Luca Fuller, Tim W. Seek, Anthony R. Fiorillo, Joseph J. W. Sertich, Seth W. Donahue. Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain. PLOS ONE, 2020; 15 (8): e0237042 DOI: 10.1371/journal.pone.0237042

Note: The above post is reprinted from materials provided by Southern Methodist University.

Fossils reveal diversity of animal life roaming Europe 2 million years ago

Fossil deer toe bones
Fossil deer toe bones

A re-analysis of fossils from one of Europe’s most significant paleontological sites reveals a wide diversity of animal species, including a large terrestrial monkey, short-necked giraffe, rhinos and saber-toothed cats.

These and other species roamed the open grasslands of Eastern Europe during the early Pleistocene, approximately 2 million years ago. Ultimately, the researchers hope the fossils will provide clues about how and when early humans migrated to Eurasia from Africa. Reconstructions of past environments like this also could help researchers better understand future climate change.

“My colleagues and I are excited to draw attention back to the fossil site of Grăunceanu and the fossil potential of the Olteţ River Valley of Romania,” said Claire Terhune, associate professor of anthropology at the University of Arkansas. “It’s such a diverse faunal community. We found multiple animals that hadn’t been clearly identified in the area before, and many that are no longer found in Europe at all. Of course, we think these findings alone are interesting, but they also have important implications for early humans moving into the continent at that time.”

About 124 miles west of the Romanian capital of Bucharest, the Olteţ River Valley, including the the important site of Grăunceanu, is one of Eastern Europe’s richest fossil deposits. Many Olteţ Valley fossil sites, including Grăunceanu, were discovered in the 1960s after landslides caused in part by deforestation due to increased agricultural activity in the area.

Archeologists and paleontologists from the Emil Racoviţă Institute of Speleology in Bucharest excavated the sites soon after they were discovered. Fossils were recovered and stored at the institute, and scholarly publications about the sites flourished in the 1970s and 1980s. But interest in these fossils and sites waned over the past 20 to 30 years, in part because many records of the excavations and fossils were lost.

Since 2012, the international team, including Terhune and researchers from Romania, the United States, Sweden and France, has focused on this important fossil region. Their work has included extensive identification of fossils at the institute and additional field work.

In addition to the species mentioned above, the researchers identified fossil remains of animals similar to modern-day moose, bison, deer, horse, ostrich, pig and many others. They also identified a fossil species of pangolin, which were thought to have existed in Europe during the early Pleistocene but had not been solidly confirmed until now. Today, pangolins, which look like the combination of an armadillo and anteater and are among the most trafficked animals in the world, are found only in Asia and Africa.

Reference:
Claire E. Terhune, Sabrina Curran, Roman Croitor, Virgil Drăgușin, Timothy Gaudin, Alexandru Petculescu, Chris Robinson, Marius Robu, Lars Werdelin. Early Pleistocene fauna of the Olteţ River Valley of Romania: Biochronological and biogeographic implications. Quaternary International, 2020; DOI: 10.1016/j.quaint.2020.06.020

Note: The above post is reprinted from materials provided by University of Arkansas. Original written by Matt McGowan.

Life in a nutshell: New species found in the carapace of late cretaceous marine turtle

Scientists identified a new ichnospecies from the shell of an extinct marine turtle fossil, the first known species coexisting on living marine vertebrates
Scientists identified a new ichnospecies from the shell of an extinct marine turtle fossil, the first known species coexisting on living marine vertebrates

While paleontologists have a wealth of vertebrate fossils at their disposal, their knowledge of the ecology of ancient extinct species, particularly regarding their relationship with invertebrate species, is relatively poor. As bones and hard shells “fossilize” much better than soft tissues and cartilage, scientists are limited in their ability to infer the presence of parasitic or symbiotic organisms living in or on these ancient vertebrates. As a result, relatively little is known about the evolutionary relationships between these ancient “clades” and their modern descendants.

All hope is not lost, though, as researchers can infer the presence of these small organisms from the footprints they left behind. These records are called trace fossils, or ichnofossils. One clear example of such ichnofossils is the boreholes that many mollusks make in the turtle shell remains and whale and fish bones on the ocean floor. However, to this date, there have been no indications that such species also lived in the shell while the turtle was alive and well.

In their recent study published in the journal Palaios, Assistant Professor Kei Sato from Waseda University and Associate Professor Robert G Jenkins from Kanazawa University focused on the trace evidence left on the carapace (shell) of an extinct basal leatherback marine turtle (Mesodermochelys sp.). The fossil was recovered from an Upper Cretaceous formation in Nio River, Japan, and the evidence in question were 43 tiny, flask-shaped boreholes all over the turtle shell fossil.

Eager to learn more about the organisms responsible for this, the scientists formulated a hypothesis, based on previous borehole evidence found on ancient marine turtle shells. After observing the fossil up close and measuring the morphological characteristics of the boreholes, they produced a 3-dimensional reconstruction of the carapace and the cross-section of one of the boreholes, which allowed them to observe the intricate details left by the species.

Sato, who is the lead author of this study, elaborates on the surprising evidence they found, “We saw that there were signs of healing around the mouth of boreholes, suggesting that the turtle was alive when the organisms settled on the carapace.” Based on the morphology and positioning of the boreholes, they determined that the likely culprits for these boreholes were “bivalves” from the superfamily Pholadoidea, creatures similar to the modern clams. These “sessile” (or immobile) organisms normally require a stable substrate to bore into, and the turtle carapace was a suitable host. The fact that the host animal was swimming around freely probably helped, as this allowed exposure to new environments.

Sato and Jenkins identified the boreholes called Karethraichnus; however, they were unable to match the characteristics of the boreholes they found with those made by any currently described species. This only meant one thing: that they had stumbled onto a completely new species! They have accordingly named this new species as Karethraichnus zaratan.

Sato is excited about the implications of their findings, stating, “This is the first study to report this unique behavior of boring bivalves as a symbiont of living marine vertebrate, which is a significant finding for the paleoecology and evolution of ancient boring bivalve clades.” Previously, no such species had been shown to live on the carapace of living vertebrates. Instead, they were often reported to occur on the remains of marine turtles and other vertebrates, laying on the ocean floor alongside various decomposing organisms. By attaching themselves on a live, free-swimming substrate, such as the carapace of a marine turtle, these pholadoid bivalves may have paved the way for a novel, yet-unknown evolutionary path of accessing previously unexplored niches and diversifying into new species. As the tracemaker bivalves of Karethraichnus zaratan are considered to belong to one of the basal groups for Pholadoidea, this knowledge is crucial for understanding the evolutionary history of extant organisms in this group.

Reference:
Robert G. Jenkins, Kei Sato. Mobile Home for Pholadoid Boring Bivalves: First Example from a Late Cretaceous Sea Turtle in Hokkaido Japan. PALAIOS, 2020; 35 (5): 228 DOI: 10.2110/palo.2019.077

Note: The above post is reprinted from materials provided by Waseda University.

Fossil Pollen Record Suggests Vulnerability to Mass Extinction Ahead

Roughly 66 million years ago an asteroid slammed into the Yucatan peninsula. New research shows darkness, not cold, likely drove a mass extinction after the impact. Credit: NASA
Representative Image : Roughly 66 million years ago an asteroid slammed into the Yucatan peninsula. New research shows darkness, not cold, likely drove a mass extinction after the impact. Credit: NASA

Reduced resilience of plant biomes in North America could be setting the stage for the kind of mass extinctions not seen since the retreat of glaciers and arrival of humans about 13,000 years ago, cautions a new study published August 20 in the journal Global Change Biology.

The warning comes from a study of 14,189 fossil pollen samples taken from 358 locations across the continent. Researchers at the Georgia Institute of Technology used data from the samples to determine landscape resilience, including how long specific landscapes such as forests and grasslands existed — a factor known as residence time — and how well they rebounded following perturbations such as forest fires — a factor termed recovery.

“Our work indicates that landscapes today are once again exhibiting low resilience, foreboding potential extinctions to come,” wrote authors Yue Wang, Benjamin Shipley, Daniel Lauer, Roseann Pineau and Jenny McGuire. “Conservation strategies focused on improving both landscape and ecosystem resilience by increasing local connectivity and targeting regions with high richness and diverse landforms can mitigate these extinction risks.”

The research, supported by the National Science Foundation, is believed to be the first to quantify biome residence and recovery time over an extended period of time. The researchers studied 12 major plant biomes in North America over the past 20,000 years using pollen data from the Neotoma Paleoecology Database.

“We find that the retreat of North American glaciers destabilized ecosystems, causing large herbivores — including mammoths, horses and camels — to struggle for food supplies,” said McGuire, an assistant professor in Georgia Tech’s School of Biological Sciences and School of Earth and Atmospheric Sciences. “That destabilization combined with the arrival of humans in North America to land a one-two punch that resulted in the extinction of large terrestrial mammals on the continent.”

The researchers found that landscapes today are experiencing resilience lower than any seen since the end of the Pleistocene megafauna extinctions.

“Today, we see a similarly low landscape resilience, and we see a similar one-two punch: humans are expanding our footprint and climates are changing rapidly,” said Wang, a postdoctoral researcher who led the study. “Though we know that strategies exist to mitigate some of these effects, our findings serve as a dire warning about the vulnerability of natural systems to extinction.”

By studying the mix of plants represented by pollen samples, the researchers found that over the past 20,000 years, forests persisted for longer than grassland habitats — averaging 700 years versus about 360 years, though they also took much longer to re-establish after being perturbed — averaging 360 years versus 260 years. “These findings were somewhat surprising,” said McGuire. “We had expected biomes to persist much longer, perhaps for thousands of years rather than hundreds.”

The research also found that forests and grasslands transition quickly when temperatures are changing fast, and that they recover most rapidly if the ecosystem contains high plant biodiversity. Yet not all biomes recover; the study found that only 64% regain their original biome type through a process that can take up to three centuries. Arctic systems were least likely to recover, the study found.

Landscape resilience, the ability of habitats to persist or quickly rebound in response to disturbances, have helped maintain terrestrial biodiversity during periods of climactic and environmental changes, the researchers noted.

“Identifying the tempo and mode of landscape transitions and the drivers of landscape resilience is critical to maintaining natural systems and preserving biodiversity given today’s rapid climate and land use changes,” the authors wrote. “However, resilient landscapes are difficult to recognize on short time scales, as perturbations are challenging to quantify and ecosystem transitions are rare.”

Contrary to prevailing ecological theory, the researchers found that pollen richness — indicating diversity of species — did not necessarily correlate with residence time. Ecological theory suggests that biodiversity increases ecosystem resilience by improving “functional redundancy,” allowing a system to maintain stability even if a single or several species are lost. “But species richness does not necessarily reflect functional redundancy, and as a result may not be correlated with ecosystem stability,” the researchers wrote.

The study used pollen data from five forest types — forest/tundra, conifer/hardwood, boreal forest, deciduous forest, and coastal forest, five shrub/herb biome types — Arctic vegetation, desert, mountain vegetation, prairies, and Mediterranean vegetation, and two no?analog biome types — spruce parkland and mixed parkland.

The Neotoma Paleoecology Database contains fossil pollen and spores that are ubiquitous in lake and mire sediments. Collected through core sampling, the samples represent a wide diversity of plant taxa and cover an extended period of time.

Though the effects of climate change and human environmental impacts don’t bode well for the future of North American plant biomes, there are ways to address it, Wang said. “We know that strategies exist to mitigate some of these effects, such as prioritizing biodiverse regions that can rebound quickly and increasing the connectivity between natural habitats so that species can move in response to warming.”

Reference:
Yue Wang, Benjamin R. Shipley, Daniel A. Lauer, Rozenn Pineau, Jenny L. McGuire. Plant biomes demonstrate that landscape resilience today is the lowest it has been since end‐Pleistocene megafaunal extinctions. Global Change Biology, 2020; DOI: 10.1111/gcb.15299

Note: The above post is reprinted from materials provided by Georgia Institute of Technology. Original written by John Toon.

Grain Size : What is Grain Size? How is Grain Size measured?

-A grain-size comparator chart (to scale). The chart shows the different size fractions from silt (63 µm) through to large cobbles (128256 mm). Such charts are useful for field comparisons.
-A grain-size comparator chart (to scale). The chart shows the different size fractions from silt (63 µm) through to large cobbles (128256 mm). Such charts are useful for field comparisons.

What is Grain Size?

Grain size is the diameter of singular sediment grains, or the lithified particles in clastic rocks. The term may apply to other granular materials, too. This differs from the size of a crystallite, which refers to the size of a single crystal within a particle or grain. Many crystals can be composed of a single grain. Granular material can vary from very small colloidal particles to boulders, through clay , silt , sand, gravel, and cobbles.

The size of a compact, three-dimensional object such as a sedimentary grain might be indexed by some measure of its volume, or by some linear measure of its geometry. For geometrically regular objects, either carries equivalent information. For irregular objects, including sediment grains, they do not. Both approaches have been used for characterizing grain size.

Size and shape are fundamental properties of clastic sediments. The distributions of size and shape in sediment deposits influence and index other important physical properties of the sediment, such as porosity, permeability, and surface roughness, they carry important information about the origin of a deposit, they affect the stability of the deposit, and they influence habitat quality for small organisms.

How is grain size measured?

The analysis of the grain size is a typical laboratory test carried out in the field of soil mechanics. The purpose of the analysis is to deduct the distribution of soil particle size.

The analysis is carried out using two techniques. Sieve Grain Size Analysis can measure the particle size ranging from 0.075 mm to 100 mm. Any grain categorization greater than 100 mm will be conducted visually whereas particles smaller than 0.075 mm can be distributed using the Hydrometer Method.

Sieve Grain Size Analysis is the experiment done using a set of sieves with varying mesh sizes. Each sieve has openings of a certain size with squared shapes. The sieve separates larger particles from smaller ones, and the soil sample is distributed in 2 quantities. The sieve retains the grains with diameters larger than the size of the openings, while the sieve passes through smaller-diameter grains. The test is conducted by placing a series of sieves with progressively smaller mesh sizes on top of each other and passing the soil sample through the stacked sieve “tower”. Therefore, the soil particles are distributed as they are retained by the different sieves. A pan is also used to collect those particles that pass through the last sieve (No. 200).

what grain size can streams transport?

Sediment moved by water can be larger than sediment moved by air because water has both a higher density and viscosity. In typical rivers the largest carried sediment is of sand and gravel size, but larger floods can carry cobbles and even boulders.

In a stream, the most easily eroded particles are small sand grains between 0.2 mm and 0.5 mm. Anything smaller or larger requires a higher water velocity to be eroded and entrained in the flow.

Grain Size International scale

ISO 14688-1:2002, establishes the basic principles for the identification and classification of soils on the basis of those material and mass characteristics most commonly used for soils for engineering purposes. ISO 14688-1 is applicable to natural soils in situ, similar man-made materials in situ and soils redeposited by people.

Name Size range (mm) Size range (approx. in)
Very coarse soil Large boulder LBo >630 >24.8031
Boulder Bo 200–630 7.8740–24.803
Cobble Co 63–200 2.4803–7.8740
Coarse soil Gravel Coarse gravel CGr 20–63 0.78740–2.4803
Medium gravel MGr 6.3–20 0.24803–0.78740
Fine gravel FGr 2.0–6.3 0.078740–0.24803
Sand Coarse sand CSa 0.63–2.0 0.024803–0.078740
Medium sand MSa 0.2–0.63 0.0078740–0.024803
Fine sand FSa 0.063–0.2 0.0024803–0.0078740
Fine soil Silt Coarse silt CSi 0.02–0.063 0.00078740–0.0024803
Medium silt MSi 0.0063–0.02 0.00024803–0.00078740
Fine silt FSi 0.002–0.0063 0.000078740–0.00024803
Clay Cl ≤0.002 ≤0.000078740

Reference:
Wikipedia
Grain size and shape : DOI: https://doi.org/10.1007/3-540-31079-7_104
Grain Size

Bird skull evolution slowed after the extinction of the dinosaurs

Phenotypic difference between each specimen for each landmark in the 11-module dataset and the mean skull shape.For each specimen, the mean landmark configuration is plotted with points coloured relative to the Procrustes distance between the position of that point in the mean shape and in that specimen. Warmer colours denote landmarks having higher displacement from the mean, and cooler colours are more similar to the mean shape. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls . Credit: Felice et al, 2020 (PLOS Biology, CC BY 4.0)
Phenotypic difference between each specimen for each landmark in the 11-module dataset and the mean skull shape.For each specimen, the mean landmark configuration is plotted with points coloured relative to the Procrustes distance between the position of that point in the mean shape and in that specimen. Warmer colours denote landmarks having higher displacement from the mean, and cooler colours are more similar to the mean shape. Data and code archived at www.github.com/rnfelice/Dinosaur_Skulls . Credit: Felice et al, 2020 (PLOS Biology, CC BY 4.0)

From emus to woodpeckers, modern birds show remarkable diversity in skull shape and size, often hypothesized to be the result of a sudden hastening of evolution following the mass extinction that killed their non-avian dinosaur cousins at the end of the Cretaceous 66 million years ago. But this is not the case according to a study by Ryan Nicholas Felice at University College London, publishing August 18, 2020 in the open-access journal PLOS Biology. In the most detailed study yet of bird skull morphology, Felice and an international team of researchers show that the rate of evolution actually slowed in birds compared to non-avian dinosaurs.

The researchers used high-dimensional 3-D geometric morphometrics to map the shape of 354 living and 37 extinct avian and non-avian dinosaurs in unprecedented detail and performed phylogenetic analyses to test for a shift in the pace of evolution after the origin of birds. They found that all regions of the skull evolved more rapidly in non-avian dinosaurs than in birds, but certain regions showed rapid pulses of evolution in particular lineages.

For example, in non-avian dinosaurs, rapid evolutionary changes in the jaw joint were associated with changes in diet, while accelerated evolution of the roof of the skull occurred in lineages that sported bony ornaments such as horns or crests. In birds, the most rapidly evolving part of the skull was the beak, which the authors attribute to adaptation to different food sources and feeding strategies.

The authors say that overall slower pace of evolution in birds compared to non-avian dinosaurs calls into question a long-standing hypothesis that the diversity seen in modern birds resulted from rapid evolution as part of an adaptive radiation following the end-Cretaceous extinction event.

Reference:
Felice RN, Watanabe A, Cuff AR, Hanson M, Bhullar B-AS, Rayfield ER, et al. (2020) Decelerated dinosaur skull evolution with the origin of birds. PLoS Biol 18(8): e3000801. doi.org/10.1371/journal.pbio.3000801

Note: The above post is reprinted from materials provided by Public Library of Science.

Exploding stars may have caused mass extinction on Earth, study shows

A team of researchers led by professor Brian Fields hypothesizes that a supernova about 65 light-years away may have contributed to the ozone depletion and subsequent mass extinction of the late Devonian Period, 359 million years ago. Pictured is a simulation of a nearby supernova colliding with and compressing the solar wind. Earth’s orbit, the blue dashed circle, and the Sun, red dot, are shown for scale. Graphic courtesy Jesse Miller
A team of researchers led by professor Brian Fields hypothesizes that a supernova about 65 light-years away may have contributed to the ozone depletion and subsequent mass extinction of the late Devonian Period, 359 million years ago. Pictured is a simulation of a nearby supernova colliding with and compressing the solar wind. Earth’s orbit, the blue dashed circle, and the Sun, red dot, are shown for scale. Graphic courtesy Jesse Miller

Imagine reading by the light of an exploded star, brighter than a full moon — it might be fun to think about, but this scene is the prelude to a disaster when the radiation devastates life as we know it. Killer cosmic rays from nearby supernovae could be the culprit behind at least one mass extinction event, researchers said, and finding certain radioactive isotopes in Earth’s rock record could confirm this scenario.

A new study led by University of Illinois, Urbana-Champaign astronomy and physics professor Brian Fields explores the possibility that astronomical events were responsible for an extinction event 359 million years ago, at the boundary between the Devonian and Carboniferous periods.

The paper is published in the Proceedings of the National Academy of Sciences.

The team concentrated on the Devonian-Carboniferous boundary because those rocks contain hundreds of thousands of generations of plant spores that appear to be sunburnt by ultraviolet light — evidence of a long-lasting ozone-depletion event.

“Earth-based catastrophes such as large-scale volcanism and global warming can destroy the ozone layer, too, but evidence for those is inconclusive for the time interval in question,” Fields said. “Instead, we propose that one or more supernova explosions, about 65 light-years away from Earth, could have been responsible for the protracted loss of ozone.”

“To put this into perspective, one of the closest supernova threats today is from the star Betelgeuse, which is over 600 light-years away and well outside of the kill distance of 25 light-years,” said graduate student and study co-author Adrienne Ertel.

The team explored other astrophysical causes for ozone depletion, such as meteorite impacts, solar eruptions and gamma-ray bursts. “But these events end quickly and are unlikely to cause the long-lasting ozone depletion that happened at the end of the Devonian period,” said graduate student and study co-author Jesse Miller.

A supernova, on the other hand, delivers a one-two punch, the researchers said. The explosion immediately bathes Earth with damaging UV, X-rays and gamma rays. Later, the blast of supernova debris slams into the solar system, subjecting the planet to long-lived irradiation from cosmic rays accelerated by the supernova. The damage to Earth and its ozone layer can last for up to 100,000 years.

However, fossil evidence indicates a 300,000-year decline in biodiversity leading up to the Devonian-Carboniferous mass extinction, suggesting the possibility of multiple catastrophes, maybe even multiple supernovae explosions. “This is entirely possible,” Miller said. “Massive stars usually occur in clusters with other massive stars, and other supernovae are likely to occur soon after the first explosion.”

The team said the key to proving that a supernova occurred would be to find the radioactive isotopes plutonium-244 and samarium-146 in the rocks and fossils deposited at the time of extinction. “Neither of these isotopes occurs naturally on Earth today, and the only way they can get here is via cosmic explosions,” said undergraduate student and co-author Zhenghai Liu.

The radioactive species born in the supernova are like green bananas, Fields said. “When you see green bananas in Illinois, you know they are fresh, and you know they did not grow here. Like bananas, Pu-244 and Sm-146 decay over time. So if we find these radioisotopes on Earth today, we know they are fresh and not from here — the green bananas of the isotope world — and thus the smoking guns of a nearby supernova.”

Researchers have yet to search for Pu-244 or Sm-146 in rocks from the Devonian-Carboniferous boundary. Fields’ team said its study aims to define the patterns of evidence in the geological record that would point to supernova explosions.

“The overarching message of our study is that life on Earth does not exist in isolation,” Fields said. “We are citizens of a larger cosmos, and the cosmos intervenes in our lives — often imperceptibly, but sometimes ferociously.”

Also participating in the study were scientists from the University of Kansas; Kings College, UK; the European Organization for Nuclear Research, Switzerland; the National Institute of Chemical Physics and Biophysics, Estonia; the United States Air Force Academy; and Washburn University.

The Science and Technology Facilities Council and the Estonian Research Council supported this study.

Reference:
Brian D. Fields, Adrian L. Melott, John Ellis, Adrienne F. Ertel, Brian J. Fry, Bruce S. Lieberman, Zhenghai Liu, Jesse A. Miller, Brian C. Thomas. Supernova triggers for end-Devonian extinctions. Proceedings of the National Academy of Sciences, 2020; 202013774 DOI: 10.1073/pnas.2013774117

Note: The above post is reprinted from materials provided by University of Illinois at Urbana-Champaign, News Bureau. Original written by Lois Yoksoulian.

Machine learning unearths signature of slow-slip quake origins in seismic data

seismogram

Combing through historical seismic data, researchers using a machine learning model have unearthed distinct statistical features marking the formative stage of slow-slip ruptures in the earth’s crust months before tremor or GPS data detected a slip in the tectonic plates. Given the similarity between slow-slip events and classic earthquakes, these distinct signatures may help geophysicists understand the timing of the devastating faster quakes as well.

“The machine learning model found that, close to the end of the slow slip cycle, a snapshot of the data is imprinted with fundamental information regarding the upcoming failure of the system,” said Claudia Hulbert, a computational geophysicist at ENS and the Los Alamos National Laboratory and lead author of the study, published today in Nature Communications. “Our results suggest that slow-slip rupture may well be predictable, and because slow slip events have a lot in common with earthquakes, slow-slip events may provide an easier way to study the fundamental physics of earth rupture.”

Slow-slip events are earthquakes that gently rattle the ground for days, months, or even years, do not radiate large-amplitude seismic waves, and often go unnoticed by the average person. The classic quakes most people are familiar with rupture the ground in minutes. In a given area they also happen less frequently, making the bigger quakes harder to study with the data-hungry machine learning techniques.

The team looked at continuous seismic waves covering the period 2009 to 2018 from the Pacific Northwest Seismic Network, which tracks earth movements in the Cascadia region. In this subduction zone, during a slow slip event, the North American plate lurches southwesterly over the Juan de Fuca plate approximately every 14 months. The data set lent itself well to the supervised-machine learning approach developed in laboratory earthquake experiments by the Los Alamos team collaborators and used for this study.

The team computed a number of statistical features linked to signal energy in low-amplitude signals, frequency bands their previous work identified as the most informative about the behavior of the geologic system. The most important feature for predicting slow slip in the Cascadia data is seismic power, which corresponds to seismic energy, in particular frequency bands associated to slow slip events. According to the paper, slow slip often begins with an exponential acceleration on the fault, a force so small it eludes detection by seismic sensors.

“For most events, we can see the signatures of impending rupture from weeks to months before the rupture,” Hulbert said. “They are similar enough from one event cycle to the next so that a model trained on past data can recognize the signatures in data from several years later. But it’s still an open question whether this holds over long periods of time.”

The research team’s hypothesis about the signal indicating the formation of a slow-slip event aligns with other recent work by Los Alamos and others detecting small-amplitude foreshocks in California. That work found that foreshocks can be observed in average two weeks before most earthquakes of magnitude greater than 4.

Hulbert and her collaborators’ supervised machine learning algorithms train on the seismic features calculated from the first half of the seismic data and attempts to find the best model that maps these features to the time remaining before the next slow slip event. Then they apply it to the second half of data, which it hasn’t seen.

The algorithms are transparent, meaning the team can see which features the machine learning uses to predict when the fault would slip. It also allows the researchers to compare these features with those that were most important in laboratory experiments to estimate failure times. These algorithms can be probed to identify which statistical features of the data are important in the model predictions, and why.

“By identifying the important statistical features, we can compare the findings to those from laboratory experiments, which gives us a window into the underlying physics,” Hulbert said. “Given the similarities between the statistical features in the data from Cascadia and from laboratory experiments, there appear to be commonalities across the frictional physics underlying slow slip rupture and nucleation. The same causes may scale from the small laboratory system to the vast scale of the Cascadia subduction zone.”

The Los Alamos seismology team, led by Paul Johnson, has published several papers in the past few years pioneering the use of machine learning to unpack the physics underlying earthquakes in laboratory experiments and real-world seismic data.

Reference:
Claudia Hulbert, Bertrand Rouet-Leduc, Romain Jolivet, Paul A. Johnson. An exponential build-up in seismic energy suggests a months-long nucleation of slow slip in Cascadia. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-17754-9

Note: The above post is reprinted from materials provided by DOE/Los Alamos National Laboratory.

Fossil leaves show high atmospheric carbon spurred ancient ‘global greening’

A 23-million-year-old leaf preserved in a onetime New Zealand lake bed, key to past atmospheric conditions. One can see veins, glands along the teeth, and holes gnawed by insects, with resulting stunted growth and scar tissue. Credit: Jennifer Bannister/University of Otago
A 23-million-year-old leaf preserved in a onetime New Zealand lake bed, key to past atmospheric conditions. One can see veins, glands along the teeth, and holes gnawed by insects, with resulting stunted growth and scar tissue. Credit: Jennifer Bannister/University of Otago

Scientists studying leaves from a 23-million-year-old forest have for the first time linked high levels of atmospheric carbon dioxide with increased plant growth, and the hot climate off the time. The finding adds to the understanding of how rising CO2 heats the Earth, and how the dynamics of plant life could shift within decades, when CO2 levels may closely mirror those of the distant past.

Scientists retrieved the leaves from a unique onetime New Zealand lake bed that holds the remains of plants, algae, spiders, beetle, flies, fungi and other living things from a warm period known as the early Miocene. Scientists have long postulated that CO2 was high then, and some plants could harvest it more efficiently for photosynthesis. This is the first study to show that those things actually happened in tandem. The findings were published this week in the journal Climate of the Past.

“The amazing thing is that these leaves are basically mummified, so we have their original chemical compositions, and can see all their fine features under a microscope,” said lead author Tammo Reichgelt, an adjunct scientist at Columbia University’s Lamont-Doherty Earth Observatory and assistant professor of geosciences at the University of Connecticut. “Evidence has been building that CO2 was high then, but there have been paradoxes.”

The so-called “carbon fertilization effect” has vast implications. Lab and field experiments have shown that when CO2 levels rise, many plants increase their rate of photosynthesis, because they can more efficiently remove carbon from the air, and conserve water while doing so. Indeed, a 2016 study based on NASA satellite data shows a “global greening” effect mainly due to rising levels of human-made CO2 over recent decades; a quarter to a half of the planet’s vegetated lands have seen increases in leaf volume on trees and plants since about 1980. The effect is expected to continue as CO2 levels rise.

This might seem like good news, but the reality is more complex. Increased CO2 absorption will not come close to compensating for what humans are pouring into the air. Not all plants can take advantage, and among those who do, the results can vary depending on temperature and availability of water or nutrients. And, there is evidence that when some major crops photosynthesize more rapidly, they absorb relatively less calcium, iron, zinc and other minerals vital for human nutrition. Because much of today’s plant life evolved in a temperate, low-CO2 world, some natural and agricultural ecosystems could be upended by higher CO2 levels, along with the rising temperatures and shifts in precipitation they bring. “How it plays out is anyone’s guess,” said Reichgelt. “It’s another layer of stress for plants. It might be great for some, and horrible for others.”

The deposit is located in a small, long-extinct volcanic crater now located on a farm near the southern New Zealand city of Dunedin. The crater, about a kilometer across, once held an isolated lake where successive layers of sediments built up from the surrounding environment. The feature was recognized only within about the last 15 years; scientists dubbed it Foulden Maar. Recognizing it as a scientific gold mine, they have been studying it ever since. Some have also been fighting an actual mining company that wants to strip the deposit for livestock feed.

In the new study, the researchers took samples from a 2009 drill core that penetrated 100 meters to near the bottom of the now-dry lake bed. Larded in between whitish annual layers of silica-rich algae that bloomed each spring for 120,000 years are alternating blackish layers of organic matter that fell in during other seasons. These include countless leaves from a subtropical evergreen forest. They are preserved so perfectly that scientists can see microscopic veins and stomata, the pores by which leaves take in air and concurrently release water during photosynthesis. Unlike most fossils, the leaves also retain their original chemical compositions. It is the only such known deposit in the Southern Hemisphere, and far better preserved than the few similar ones known from the north.

The Miocene has long been a source of confusion for paleoclimate researchers. Average global temperatures are thought to have been 3 to 7 degrees C hotter than today, and ice largely disappeared at the poles. Yet many proxies, mainly derived from marine organisms, have suggested CO2 levels were only about 300 parts per million-similar to those of preindustrial human times, and not enough to account for such warming. With evidence of high CO2 elusive, scientists have speculated that previous proxy measurements must be off.

Based on the new study and a related previous one also at Foulden Maar, the researchers were able to get at this conundrum. They analyzed the carbon isotopes within leaves from a half-dozen tree species found at various levels in the deposit. This helped them zero in on the carbon content of the atmosphere at the time. They also analyzed the geometry of the leaves’ stomata and other anatomical features, and compared these with modern leaves. By combining all the data into a model, they found that atmospheric CO2 was not 300ppm, but about 450-a good match for the temperature data. Second, they showed that the trees were super-efficient at sucking in carbon through the stomata, without leaking much water through the same route-a factor that all plants must account for. This allowed them to grow in marginal areas that otherwise would have been too dry for forests. The researchers say this higher efficiency was very likely mirrored in forests across the northern temperate latitudes, with their far greater landmasses.

Human emissions have now pushed CO2 levels to about 415 parts per million, and they will almost certainly reach 450 by about 2040-identical to those experienced by the Foulden Maar forest. Estimates of the resulting temperature increases over decades and centuries vary, but the new study suggests that most are in the ballpark.

“It all fits together, it all makes sense,” said study coauthor William D’Andrea, a paleoclimate scientist at Lamont-Doherty. In addition to showing how plants might react directly to CO2, “this should give us more confidence about how temperatures will change with CO2 levels,” he said.

Study coauthor Daphne Lee, a paleontologist at New Zealand’s University of Otago, led the charge to study Foulden Maar’s rich ecosystem after it came to light. More recently, she became an unexpected defender of the maar, when a company with owners in Malaysia and the United Kingdom announced plans to strip-mine the deposit for use as a feed additive for for pigs, ducks and other intensively farmed animals. With many more discoveries probably to be made, scientists were horrified, and allied themselves with locals who feared noise and dust. The Dunedin city council is now looking into buying the land to protect it.

The study was also coauthored by Ailín del Valdivia-McCarthy, a former intern at Lamont-Doherty; Bethany Fox of the University of Huddersfield; Jennifer Bannister of the University of Otago; John Conran of the University of Adelaide; and William Lee of the University of Auckland.

Reference:
Tammo Reichgelt, William J. D’Andrea, Ailín del C. Valdivia-McCarthy, Bethany R. S. Fox, Jennifer M. Bannister, John G. Conran, William G. Lee, Daphne E. Lee. Elevated CO2, increased leaf-level productivity, and water-use efficiency during the early Miocene. Climate of the Past, 2020; 16 (4): 1509 DOI: 10.5194/cp-16-1509-2020

Note: The above post is reprinted from materials provided by Earth Institute at Columbia University. Original written by Kevin Krajick.

Pumice arrives delivering ‘vitamin boost’ to the reef

Professor Scott Bryan recovering pumice. Credit: QUT
Professor Scott Bryan recovering pumice. Credit: QUT

The giant pumice raft created by an underwater volcanic eruption last August in Tonga has begun arriving on the Australian eastern seaboard, delivering millions of reef-building organisms that researchers say could be a ‘vitamin boost’ for the Great Barrier Reef.

Associate Professor Scott Bryan, who has been studying the impact of pumice rafts for nearly 20 years, was part of an international team that earlier this year used underwater robots with cameras and sampling gear to collect material from the volcano near Tonga that produced the raft that at one stage was twice the size of Manhattan.

The unnamed volcano, which is known only as Volcano F or 0403-091, became the center of international headlines last year when Shannon Lenz’s video footage of the giant pumice raft, and the first-hand accounts of Australian sailors Michael Hoult and Larissa Brill, went viral.

Pumice, a lightweight bubble-rich rock that can float in water, forms when frothy magma cools rapidly.

Professor Bryan said the pumice had started arriving on Australia’s shoreline by April, and had spread out along an area from about Townsville to northern New South Wales.

“Pumice rafts alone won’t help mitigate directly the effects of climate change on the Great Barrier Reef,” Professor Bryan said.

“This is about a boost of new recruits, of new corals and other reef-building organisms, that happens every five years or so. It’s almost like a vitamin shot for the Great Barrier Reef.”

Professor Bryan published world-first research in 2004 of a previous eruption from the same volcano and last month published research in the journal Frontiers in Earth Science examining pumice rafts following the 2012 eruption of the Havre volcano.

Professor Bryan described the process of the pumice raft boosting the Great Barrier Reef as part of a “very ancient process” in which oceans and volcanoes have likely combined to transfer marine life around the Earth for hundreds of millions of years.

“This shows that the Great Barrier Reef has connections to coral reefs that are thousands of kilometers further east,” he said.

“In terms of the health of the Great Barrier Reef, it’s also important that these distant reefs are taken care of.”

Earlier this year, Professor Bryan was part of an international research team, including Professor Matt Dunbabin from QUT’s Center for Robotics, which received funding from the National Environment Research Council UK (nerc.ukri.org/funding/availabl … earchgrants/urgency/) to explore the underwater volcano and examine the eruption site.

“It was really our first chance to go and explore the summit of this underwater volcano,” Professor Bryan said.

“We were able to send underwater robots down with cameras and sampling gear to collect material from the actual volcano that produced this pumice raft last year.

“It’s allowed us to see what these volcanoes look like underwater.

“It’s a volcano that’s getting close to breaching the surface and will become an island in years to come.

“We’ve been able to see how life has come back to the summit of this volcano after this eruption, and see that restoration of life,” he said.

“One of the advantages of our trip to Tonga is that for the first time we’ve been able to collect samples from the vent, from the seafloor so soon after the eruption.”

Professor Bryan now has four groups of pumice from the August eruption to study and compare: the pumice collected from the sea by the Australian sailors shortly after the eruption; the pumice that sunk directly at the eruption site; pumice that washed up in Fiji a month later, and the pumice that has traveled more than 3000 km to land on Australia’s coastline.

“We don’t understand why some pumice sinks during the eruption at the location and others can float for many months and years on the world’s oceans,” Professor Bryan said.

“This will help us understand the mechanisms and dynamics of these explosive eruptions and understand better why these eruptions produce potentially hazardous pumice rafts.”

Professor Bryan published world-first research in 2004 of a previous eruption from the same volcano. The research shows how pumice waves from the south-west Pacific could not only be something that helps the Great Barrier Reef but also supported earlier ideas on how the reef was formed in the first place.

Professor Bryan has been collecting pieces of pumice from the eruption as they arrive on the beaches in south-east Queensland, and is examining the marine organisms to determine when in the journey they latched on for the ride.

“Overall, we’ve identified more than one hundred different species attached to the pumice—a tremendous diversity of plants and animals,” Professor Bryan said.

“Anything that is looking for a home out in the ocean tends to find a home on this pumice.

“Each piece of pumice has its own little community that has been transported across the world’s oceans—and we have had trillions of pieces of this pumice floating out there following the eruption.

“Each piece of pumice is a home, and a vehicle for an organism, and it’s just tremendous. The sheer numbers of individuals and this diversity of species is being transported thousands of kilometers in only a matter of months is really quite phenomenal.”

Professor Bryan said the tools to track pumice rafts had changed dramatically since he began exploring this area of research.

“How I got into this was walking along a beach in 2002 and seeing a line of pumice that had washed up on the shore thinking this had come from an eruption but I don’t know where,” he said.

With this most recent eruption, unlike in 2002, he was able to work with QUT spatial scientist Dr. Andrew Fletcher to use high-resolution daily satellite images to follow the pumice raft for weeks after the eruption.

Part of the research project ahead will be to examine the chemical composition of the pumice from the 2019 eruption, and compare it to the pumice produced in the 2001 eruption.

“Given the volcano erupted 18 years ago, we want to know whether this is left-over magma from 2001 that has erupted now, or is it a totally new batch of magma that has arrived at the volcano causing the eruption,” Professor Bryan said. “This can then give us insights into how volcanoes work and what the triggers are for eruption.”

Reference:
oseph Knafelc et al, Defining Pre-eruptive Conditions of the Havre 2012 Submarine Rhyolite Eruption Using Crystal Archives, Frontiers in Earth Science (2020). DOI: 10.3389/feart.2020.00310

Note: The above post is reprinted from materials provided by Queensland University of Technology.

Unearthing evidence for the origins of plate tectonics

Minerals inside tiny crystals could reveal how Earth's crust began moving.
Minerals inside tiny crystals could reveal how Earth’s crust began moving. Credit: Luca Galuzzi/Wikimedia Commons, licensed under CC 2.5

Minerals trapped inside tiny crystals that have survived the grinding of the continents over billions of years may help to reveal the origins of plate tectonics and perhaps even provide clues about how complex life sprang up on Earth.

The theory of plate tectonics—which describes how the Earth’s crust is separated into plates that float and slide on a layer of malleable rock below—became widely accepted by science around 50 years ago. The process is believed to have largely shaped the world around us by enabling continents to form, throwing up enormous mountain ranges when they collide, creating volcanic islands and triggering catastrophic earthquakes.

But there is still debate about exactly how and when in our planet’s 4.5-billion-year history the plates formed, estimates vary from less than one billion to 4.3 billion years ago.

It is also unclear exactly how quickly plate tectonics evolved, says Dr. Hugo Moreira, a geologist at the University of Montpellier in France. Did Earth’s crust split abruptly into multiple plates and start moving over just tens of millions of years, or was the process far more gradual, taking hundreds of millions of years or more?

Understanding this could prove crucial for understanding not just how the planet itself has evolved, but also how life may have been kickstarted on Earth. The conditions created by plate tectonics are thought to have helped make Earth hospitable to life in the first place and also provided vital nutrients needed for complex multicellular life to prosper.

Crystal time capsules

Dr. Moreira and his colleagues are seeking answers to these questions inside tiny zircon crystals, which are time capsules of Earth’s distant past due to their extreme robustness. They are often found preserved in rock despite the action of continual weathering and geological events.

Many of these crystals have previously been dated by analysing the radioactive decay of isotopes—different forms of elements—that they contain. Some have been found to date as far back as 4.4 billion years ago, the earliest known fragments of Earth’s crust.

“That’s why zircon’s amazing, because although the rocks that compose the continents were destroyed, the zircon survived in the sedimentary record,” said Dr. Moreira. Scientists have previously used zircon crystals to study the history of the Earth’s continental crust, but it has not yet been enough to provide a definitive consensus for how plate tectonics started, he says.

“After analysing hundreds of thousands of them, we still do not have an agreement,” said Dr. Moreira, a member of the MILESTONE project being led by Dr. Bruno Dhuime, a geosciences researcher for the French National Centre for Scientific Research also at the University of Montpellier.

The researchers are hoping to use these crystals—which typically measure about a tenth of a millimetre, or roughly the thickness of a human hair—to improve our insight into the timing and evolution of plate tectonics.

The MILESTONE group will drill down to an even tinier scale—about a hundredth of a millimetre—to examine traces of apatite and feldspar minerals trapped inside the zircon crystals. Strontium and lead isotopes in these ‘inclusions’ can add unprecedented detail on the zircon’s source of formation and whether this occurred in the varying types of magma below stagnant or moving plates, says Dr. Moreira.

“It will be a critical step towards a better understanding of how our planet evolved,” he said. “If we manage to measure the isotopic composition of these tiny inclusions, we might tell what was the composition of the rock from which the zircon crystallised. We can perhaps understand how evolved the crust was at that point and in which type of tectonic settings the magma was formed.”

This tiny-scale analysis been made possible by the set-up of a laboratory containing a specialised, highly sensitive mass spectrometer, equipment that measures the characteristics of atoms.

The team hopes to start analysing samples next month, ultimately investigating inclusions in more than 5,000 zircons of varying age from all over the world to build up a wide-scale picture. “What we want to do is pinpoint when plate tectonics went global instead of when it was localised in isolated points here and there,” said Dr. Moreira.

Underground structures

At the opposite end of the scale, other researchers have been seeking clues to the origins of plate tectonics in two massive continent-sized structures found deep underground beneath the Pacific and African plates.

These ‘thermochemical piles,” mysterious structures located about 2,900 kilometres below the surface at the boundary between Earth’s core and mantle, were discovered in the 1990s with the aid of seismic tomography—imaging from seismic waves produced by earthquakes or explosions. They were detected as potentially warmer areas of material in which seismic waves travel at different speeds than in the surrounding mantle, but there is still much debate about exactly what they are, including their composition, longevity, shape and origins.

Over the past couple of decades, a ‘fiery’ debate has arisen over their proposed link to movements on the planet’s surface and so their potential involvement in the emergence of plate tectonics, explained Dr. Philip Heron, a geoscientist who studied the structures as lead researcher on the TEROPPLATE project at Durham University.

“These piles are thought to have an impact on how material moves within the planet, and therefore how the surface behaves over time,” he said. Events on the surface may in turn drive their activity.

One theory is that these piles are stable for long geological periods and their edges correspond with the position of key features involved in plate tectonics on Earth’s surface, such as supervolcanoes.

However, their extreme depth makes these piles difficult to observe directly. “Given that these structures are in places 100 times higher than Mount Everest, they may be the largest things in our planet that we know the least about,” said Dr. Heron.

Supercomputer power

The TEROPPLATE project harnessed supercomputer power to investigate. Using more than 1,000 computers working in tandem, the team developed 3-D models of Earth to show how the assumed chemical composition of large hot regions deep underground might influence the formation and location of deep mantle plumes.

However, their models indicated that the piles may be more passive in plate tectonics than initially thought and that the world would still form similar geological features without them. “When looking at the positioning of large plumes of material that form supervolcanoes, our numerical simulations indicated that the chemical piles were not the controlling factor in this,” said Dr. Heron.

But he added that these findings were not fully conclusive and have also opened the door to other interesting avenues for research—such as exploring the implications that these structures are constantly moving through the mantle rather than being largely stationary.

“It gives weight to the theory that the chemical piles may not be rigid and fixed in our planet, and that the deep Earth may evolve as readily as the continents on our surface move around,” he said. “It’s a push to start looking deeper.”

Some of TEROPPLATE’s results also indicate that the piles may have been robust enough to survive Earth’s earliest beginnings. That makes it feasible for them to have been around for the start of plate tectonics and thus to have had roles in the process that we don’t yet know about, adds Dr. Heron.

All of this could have implications for understanding our own place on Earth too. If, for instance, plate tectonics evolved rapidly early in Earth’s history, it may raise questions such as why complex life didn’t emerge earlier or just how closely the two are linked, says Dr. Moreira.

“To fundamentally understand where plate tectonics comes from is potentially the essence of life,” added Dr. Heron. “On Earth, there’s not a thing that hasn’t been impacted by it.”

Note: The above post is reprinted from materials provided by Horizon: The EU Research & Innovation Magazine. The original article was written by Gareth Willmer.

Related Articles