back to top
27.8 C
New York
Thursday, September 19, 2024
Home Blog Page 73

Nobody wins in a landslide

Deposits from a landslide outside Pahrump, Nevada.
Deposits from a landslide outside Pahrump, Nevada. Credit: Daniel Sturmer/UC

A University of Cincinnati geologist is studying one of the lesser-known hazards of life in the West: landslides.

People who live in the Basin and Range of Nevada are accustomed to earthquakes, flash floods and wildfires. But UC professor Daniel Sturmer said this part of the United States has generated numerous, large landslides as well. This landslide-prone region includes parts of California, Utah and Arizona.

“Certainly, in the Basin and Range, it’s a hazard that is vastly underestimated,” he said.

Landslides get far less attention than other natural disasters because they typically occur in less populous areas, Sturmer said. But they can be devastating.

A landslide in Vajont, Italy, in 1963 killed more than 2,000 people after the face of a mountain crashed into a lake, creating a tsunami that scientists said had the force of nuclear bomb.

Sturmer, an assistant professor of geology in UC’s McMicken College of Arts and Sciences, is working with the Nevada Bureau of Mines and Geology to add specific details on landslides to the state’s map of known hazards. The interactive map includes areas prone to wildfires, flash-flood zones and earthquake fault lines.

“These failures frequently occur in El Niño years when you have a lot of rain. Fires exacerbate the problem because you don’t have vegetative roots holding the soil in place. And then you get heavy rains,” he said.

Sturmer presented the project to the Geological Society of America conference in Indianapolis in November.

The U.S. Geological Survey (USGS) oversees a national landslide hazards program to reduce long-term losses from landslides and to understand what causes them. Landslides are responsible for as much as $3.5 billion in damage each year in the United States, according to the USGS. Rockfalls kill dozens of people every year, according to the agency.

Landslides are never far from the popular imagination. The phrase “won by a landslide” has been in use in connection with elections since at least the 1840s.

In his 1880 book “A Tramp Abroad,” humorist Mark Twain wrote of a famous landslide in the Swiss countryside that destroyed four towns 74 years earlier.

“A constant marvel with us as we sped along the bases of the steep mountains on this journey was not that avalanches occur, but that they are not occurring all the time,” he wrote. “One does not understand why rocks and landslides do not plunge down these declivities daily.”

UC geology graduate student Nicholas Ferry has been studying the Blue Diamond landslide south of Las Vegas, Nevada.

“Las Vegas has grown very rapidly over the last 20 years. Development is approaching this area where potentially another landslide could happen,” Ferry said.

But Ferry said the region with the most landslides ironically is home to the world’s oldest mountains: the Appalachians.

Ferry decided to come to UC to study geology because of its in-depth work on landslides.

“Of all the schools I applied to, UC was doing the most interesting work. I jumped all over it,” Ferry said. “It’s been pretty exciting.”

Landslides hold tremendous potential energy. In the textbook “Geology of California,” authors Robert Norris and Robert Webb wrote about the incredible force behind an Ice Age landslide in the San Bernardino mountains called Blackhawk. It’s one of the most-studied landslides in the United States, Sturmer said.

“As the slide moved down the canyon (at 170 mph), it passed over a ridge that crosses the canyon and was thus launched into the air—a geologic version of a flying carpet,” Norris and Webb wrote.

Rocks from the slide reached top speeds of 270 mph as they fell more than 4,000 feet and came to rest more than 5 miles away. Sturmer said evidence of that slide is still evident today, despite thousands of years of erosion.

“It’s one of the most-studied landslides in the region. The mountain failed on a ridge. The falling rock was supported on a cushion of air as it traveled,” Sturmer said.

Nevada’s Bureau of Mines and Geology gives residents detailed information about their local risks of natural hazards through an interactive online map, said Rachel Micander, a cartographer for the agency.

“The web application contains data on earthquakes, floods and wildfires, the top three natural hazards in Nevada,” she said. “We also have information on radon. But there is very little about landslides now.”

She studied geology under Sturmer at the University of Nevada, Reno.

“We have a few types of landslides in Nevada and across the country. There are records in the geologic strata of these types of landslides happening across Nevada,” she said.

Landslides pose a legitimate risk because development is expanding to areas that can become unstable under the right conditions, she said.

“Reno sits in a valley. As the population grows, we’re building higher up on the mountain slopes,” she said. “We’ve seen debris flows recently in the Carson City area.”

The hazard map gives residents information to prepare for the most likely natural disasters nearest them and to make smart decisions about where to build, she said.

“That’s the goal of the project, to develop a tool for Nevada citizens to make educated decisions about their community. Learn about hazard risks,” she said. “A lot of people don’t realize Nevada is earthquake country.”

Micander said people accustomed to earthquakes take precautions such as securing bookcases to the walls and not placing heavy objects like picture frames or unsecured shelving over beds.

“A lot of these hazards are fairly easily mitigated,” Micander said. “I know open shelving is trendy. But I keep the doors on my closets and cabinets. Mom always put a wooden spoon through the handles to secure the kitchen cupboards.”

In addition, the digital map identifies the risks of radon, a colorless, odorless toxic gas that can seep into homes from underground bedrock and the water table. It’s one of the leading causes of lung cancer in the United States. The Centers for Disease Control and Prevention recommends people test their homes for radon exposure and make repairs, if necessary, to limit future exposure.

Micander said she would like to incorporate Sturmer’s new landslide data in the hazard map. So far, he has identified about 70 sites of landslides or landslide-prone areas. He has visited about a dozen of them but plans to study more in person.

“Most of them either haven’t been studied at all or have been studied very little,” he said. “It’s been a fun hunt to look for them. It seems every time I go looking for them, I find more.”

Note: The above post is reprinted from materials provided by University of Cincinnati.

Punctuated earthquakes for New Madrid area: New research uncovers cluster of past events

Christopher DuRoss of the USGS updates maps of the trench walls while sitting on one of the benches excavated across the sackungen. Flags on the wall denote different layers of sediment the team identified that moved during past earthquake events. Credit: Ryan Gold.
Christopher DuRoss of the USGS updates maps of the trench walls while sitting on one of the benches excavated across the sackungen. Flags on the wall denote different layers of sediment the team identified that moved during past earthquake events. Credit: Ryan Gold.

In 1811 and 1812, the region around New Madrid, Missouri, experienced a number of major earthquakes. The final and largest earthquake in this sequence occurred on the Reelfoot fault, and temporarily changed the course of the Mississippi River. These earthquakes are estimated to be just shy of magnitude 8.0 and devastated towns along the Mississippi River—soil liquefied, houses collapsed, and chimneys toppled.

Because of the 1811-1812 earthquakes, the New Madrid area is recognized as a high-hazard zone for potential future seismic events. Previous investigations found have also found evidence for multiple, older earthquake events preserved in the geologic record.

“We know there were also large earthquakes at ~1450 AD and at ~900 AD,” says Ryan Gold of the U.S. Geological Survey (USGS), but frequent earthqakes along the fault may not be the norm.

“If earthquakes happen on the Reelfoot fault every 500 years, and have been doing so for hundreds of thousands of years, we would expect to see a mountain range there—but we don’t,” says Gold. Instead, he suggests the modest fault scarp associated with the Reelfoot fault indicate that the earthquakes haven’t been sustained over a long period of time.

To test this, USGS researchers wanted to look beyond the last few thousand years. Preserving long-records of past earthquakes can be a challenge for the Reelfoot fault because natural processes like rain and occasional floods on the Mississippi River can conspire to erase the record of past earthquakes. “That’s coupled with anthropogenic effects—lots of farming, forestry, [and] construction,” says Gold.

Instead of studying the fault directly, the USGS team moved to the rolling hills around the Mississippi River, east of the Reelfoot fault. They noted a high concentration of depressions called sackungen (German word meaning “to sag”) near the fault, and hypothesized that these sags are cracks in the ground caused by strong shaking from large earthquakes.

The USGS excavated a trench across one of the sackung that had formed in Peoria loess—silt that was blown in during the last glacial period until as recently as around 11,000 years ago. Gold explained how the team hypothesized that a sackung crack forms during an earthquake, the middle of the crack falls downward, and sediment washes in from the shoulders—thus recording the timing of the earthquake.

Their trench revealed four distinct packages of sediment, says Gold, adding he was pleased to see such a long record. “I figured we would only see the 1811 and 1812 earthquake sequence.”

In the sackung, they dated all four packages of sediment and found they corresponded to previously identified earthquakes that occurred on the Reelfoot fault: 1812 AD, ~1450 AD, ~900 AD, and ~2300 BC. Importantly, they didn’t find evidence for any additional earthquakes in the interval from ~4,300 to ~11,000 years ago. If the earthquake record preserved in the sackung is complete, “our record confirms that the tempo of earthquakes hasn’t been sustained,” says Gold.

Gold will present their findings on Tuesday at the Geological Society of America’s Annual meeting in Indianapolis, Indiana. “Our results will hopefully encourage the seismic hazard community to consider the possibility that the tempo of faulting may be variable,” says Gold. “Sometimes there may be very long intervals between earthquakes and sometimes the earthquakes may be more closely spaced.”

The USGS team hopes their new results on New Madrid ruptures can provide insights to those who model risk and seismic hazard in the region. Gold says that refining and updating seismic hazards with more information on how a fault might rupture can help with building codes—designing buildings just right to keep us safe, but not over-designed, which can waste resources.

Reference:
Four Major Holocene Earthquakes on The Reelfoot Fault, New Madrid Seismic Zone, DOI: 10.1130/abs/2018AM-320906

Note: The above post is reprinted from materials provided by Geological Society of America.

White line of algae deaths marks uplift in 2016 Chilean earthquake

Ed Garrett of Durham University examines bleached coralline algae related to the the 2016 magnitude 7.6 Chiloé earthquake in Chile. Credit: Martin Brader
Ed Garrett of Durham University examines bleached coralline algae related to the the 2016 magnitude 7.6 Chiloé earthquake in Chile. Credit: Martin Brader

A bleached fringe of dead marine algae, strung along the coastlines of two islands off the coast of Chile, offers a unique glimpse at how the land rose during the 2016 magnitude 7.6 Chiloé earthquake, according to a new study in the Bulletin of the Seismological Society of America.

Durham University researcher Ed Garrett and colleagues used the algal data to help confirm the amount of fault slip that occurred during the Chiloé quake, which took place in an area that had been seismically quiet since the 1960 magnitude 9.5 Valdivia earthquake—the largest instrumentally recorded earthquake in the world.

There are fewer records of more moderate earthquakes in the region, so “precisely quantifying the amount and distribution of slip in 2016 therefore helps us to understand the characteristics of these smaller events. This information helps us to better assess how faults accumulate and release strain during sequences of ruptures of different magnitudes,” said Garrett.

“Such insights in turn assist with efforts to assess future seismic hazards,” he added. “While the 2016 earthquake occurred in a sparsely populated region, similar major earthquakes on the Chilean Subduction Zone could pose significant hazards to more populous regions in the future.”

Garrett and colleagues combined their calculations of the amount of uplift indicated by the algal data—about 25.8 centimeters—with satellite data of the crust’s movement during the earthquake to determine that the maximum slip along the fault was approximately three meters.

The slip is equivalent to about 80 percent of the maximum cumulative plate convergence since the 1960 Valdivia earthquake, they conclude, which is a result similar to other recent estimates of slip. Some of the earliest reports from the 2016 earthquake suggested that the maximum fault slip during the event was as much as five meters, which would have wiped out or exceeded all the seismic stress built up by plate convergence since the 1960 earthquake.

When an earthquake rupture lifts coastal crust, it can strand organisms like algae and mussels that fix themselves to rocks, raising their homes above their normal waterline. The catastrophe leaves a distinctive line of dead organisms traced across the rock. The distance between the upper limit of this death zone and the upper limit of the zone containing living organisms offers an estimate of the vertical uplift of the crust.

Researchers have long used the technique to measure abrupt vertical deformation of the crust. During the famous 19th century voyage of the HMS Beagle, Charles Darwin used a band of dead mussels to determine the uplift of Isla Santa María during the magnitude 8.5 Chilean earthquake of 1835.

Ten months after the Chiloé earthquake, Garrett and his colleagues were studying the effects of the quake on coastal environments such as tidal marshes, looking for modern examples of how earthquakes affect these environments that they could use in their study of prehistoric earthquakes.

“It was only once we reached Isla Quilán that we noticed the band of bleached coralline algae along the rocky shorelines and realized that we could use this marker to quantify the amount of uplift,” Garrett said.

The research team made hundreds of measurements of the bleached algae line where it appeared on Isla Quilán and Isla de Chiloé. The rich algal record was helpful in corroborating the amount of vertical uplift in a region of the world sparsely covered by instruments that measure crustal deformation. The study demonstrates that land-level changes as low as 25 centimeters can be determined using large numbers of “death-zone” measurements at sites that are sheltered from waves, the researchers note.

Reference:
Ed Garrett et al, First Field Evidence of Coseismic Land‐Level Change Associated with the 25 December 2016 Mw 7.6 Chiloé, Chile, Earthquake, Bulletin of the Seismological Society of America (2018). DOI: 10.1785/0120180173

Note: The above post is reprinted from materials provided by Seismological Society of America.

Elephant Rock, Iceland

Elephant Rock, Iceland
Elephant Rock, Iceland

This basalt sea-cliff on the island of Heimaey in Southern Iceland looks just like a giant elephant or wooly mammoth dipping its trunk into the sea.

Heimaey, literally Home Island, is an Icelandic island. At 13.4 square kilometres (5.2 sq mi), it is the largest island in the Vestmannaeyjar archipelago, and the largest and most populated island off the Icelandic coast. Heimaey is 4 nautical miles (7.4 km; 4.6 mi) off the south coast of Iceland. It is the only populated island of the Vestmannaeyjar islands, with a population of 4,500. The airport and the Westman Islands Golf Club cover a large part of the island.

More Info about Heimaey

Heimaey, literally Home Island, is an Icelandic island. At 13.4 square kilometres (5.2 sq mi), it is the largest island in the Vestmannaeyjar archipelago, and the largest and most populated island off the Icelandic coast. Heimaey is 4 nautical miles (7.4 km; 4.6 mi) off the south coast of Iceland. It is the only populated island of the Vestmannaeyjar islands, with a population of 4,500. The Vestmannaeyjar Airport and the Westman Islands Golf Club taken together cover a good portion of the island.

In January 1973, lava flow from nearby Eldfell destroyed half the town and threatened to close its harbour, its main income source. An operation to cool the advancing lava with sea water saved the harbour.

Paleontologists discover new sauropod species in Argentina

The region where the new species of sauropod was found is unusual as it would have been a desert during that era, 110 million years ago
The region where the new species of sauropod was found is unusual as it would have been a desert during that era, 110 million years ago

A team of Spanish and Argentine paleontologists have discovered the remains of a dinosaur that lived 110 million years ago in the center of the country, the National University of La Matanza revealed Friday.

The remains came from three separate dinosaurs from the herbivorous group of sauropods, the best known of which are the Diplodocus and Brontosaurus. This new species has been named Lavocatisaurus agrioensis.

“We found most of the cranial bones: the snout, the jaws, a lot of teeth, also the bones that define the eye sockets for example and, in that way, we were able to create an almost complete reconstruction,” said Jose Luis Carballido, a researcher at the Egidio Feruglio museum and the national council of scientific investigations.

Parts of the neck, tail and back were also found.

“Not only is this the discovery of a new species in an area where you wouldn’t expect to find fossils, but the skull is almost complete,” added Carballido.

The remains belonged to an adult of around 12 meters (39 feet) in length, and two minors of around six to seven meters.

The paleontologists say the dinosaurs moved around in a group and died together.

“This discovery of an adult and two juveniles also signifies the first record of a group displacement among the rebbachisaurus dinosaurs,” said study lead author Jose Ignacio Canudo of Zaragoza University.

The area in which the fossils were found is unusual for dinosaurs as it would have been a desert with sporadic lakes in that era.

Sauropods were the biggest creatures ever to walk the planet. It is believed that Supersaurus could reach up 33-34 meters in length and Argentinosaurus might have weighed up to 120 tons.

They were herbivorous quadrupeds with long necks and tails, massive bodies and small heads.

But the discovery in Neuquen, published in the scientific journal Acta Palaeontologica Polonica, remains a huge surprise.

“While one can imagine that this group of sauropods could have adapted to move in more arid environments, with little vegetation, little humidity and little water, it’s an area in which you wouldn’t be looking for fossils,” said Carballido.

Note: The above post is reprinted from materials provided by AFP.

Giant flightless birds were nocturnal and possibly blind

Giant nocturnal elephant birds are shown foraging in the ancient forests of Madagascar at night.
Giant nocturnal elephant birds are shown foraging in the ancient forests of Madagascar at night. Credit: John Maisano for the University of Texas at Austin Jackson School of Geosciences

If you encountered an elephant bird today, it would be hard to miss. Measuring in at over 10 feet tall, the extinct avian is the largest bird known to science. However, while you looked up in awe, it’s likely that the big bird would not be looking back.

According to brain reconstruction research led by The University of Texas at Austin, the part of the elephant bird brain that processed vision was tiny, a trait that indicates they were nocturnal and possibly blind. The findings were published Oct. 31 in the journal Proceedings of the Royal Society B.

A nocturnal lifestyle is a trait shared by the elephant bird’s closest living relative, the kiwi — a practically blind, chicken-size denizen of New Zealand — and a clue that is helping scientists learn more about the elephant bird’s behavior and habitat, said Christopher Torres, a Ph.D. candidate who led the research.

“Studying brain shape is a really useful way of connecting ecology — the relationship between the bird and the environment — and anatomy,” Torres said. “Discoveries like these give us tremendous insights into the lives of these bizarre and poorly understood birds.”

Julia Clarke, a professor at the UT Jackson School of Geosciences and Torres’ Ph.D. adviser, co-authored the study. Torres is a student in UT’s Department of Integrative Biology in the College of Natural Sciences.

Elephant birds were large, flightless and lived in what is now Madagascar until a mixture of habitat loss and potential human meddling led to their demise between 500 and 1,000 years ago.

“Humans lived alongside, and even hunted, elephant birds for thousands of years,” Torres said. “But we still know practically nothing about their lives. We don’t even really know exactly when or why they went extinct.”

Scientists had previously assumed that elephant birds were similar to other big, flightless birds, like emus and ostriches — both of which are active during the day and have good eyesight. But Torres and Clarke revealed that elephant birds had distinctly different lifestyles through reconstructions of their brains.

Bird skulls wrap tightly around their brains, with the turns and curves of the bone corresponding to brain structures. The researchers studied the skulls of two species of elephant birds. By using CT-imaging data of the two elephant bird skulls, the researchers were able to create digital brain reconstructions called endocasts. In addition to the elephant bird skulls, the researchers also created endocasts for close relatives of the elephant bird, both living and extinct.

In both elephant bird skulls, the optic lobe — a bundle of brain nerves that controls eyesight — was very small, with the structure almost absent in the larger species. The lobe had the most in common with that of a kiwi, which Torres said came as a “total shock” because of the kiwi’s poor vision and nocturnal behavior.

“No one has ever suspected that elephant birds were nocturnal,” Torres said. “The few studies that speculated on what their behavior was like explicitly assumed they were active during the day.”

Andrew Iwaniuk, an associate professor at the University of Lethbridge and an expert on brain evolution in birds who was not involved with the research, said that he had a similar reaction to the findings.

“I was surprised that the visual system is so small in a bird this big,” he said. “For a bird this large to evolve a nocturnal lifestyle is truly bizarre and speaks to an ecology unlike that of their closest relatives or any other bird species that we know of.”

In addition to vision, the endocasts rendering of the olfactory bulb — the part of the brain that processes the sense of smell — helped shed light on the habitats where elephant birds lived. The larger of the two species of elephant bird had a large olfactory bulb, a trait associated with forest dwelling. In contrast, the smaller elephant bird species had a smaller olfactory bulb, possibly indicating that it lived in grasslands. The smaller species also appears to have somewhat keener vision, which means it may have been more active at dusk than during the pitch black of night.

“Details like these not only tell us about what the lives of elephant birds were like, but also what life in general was like on Madagascar in the distant past,” Clarke said. “As recently as 500 years ago, very nearly blind, giant flightless birds were crashing around the forests of Madagascar in the dark. No one ever expected that.”

This work was funded by a National Science Foundation grant and the Jackson School of Geosciences.

Reference:
Christopher R. Torres, Julia A. Clarke. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proceedings of the Royal Society B: Biological Sciences, 2018; 285 (1890): 20181540 DOI: 10.1098/rspb.2018.1540

Note: The above post is reprinted from materials provided by University of Texas at Austin.

Researchers help map and scout for hydrothermal vents in Gulf of California

This hydrothermal chimney was one of several discovered by MBARI scientists in the southern Pescadero Basin.
This hydrothermal chimney was one of several discovered by MBARI scientists in the southern Pescadero Basin. Credit: MBARI

Almost 4,000 meters below the sea surface, in the southern Pescadero Basin, jagged ivory towers rise from the seafloor and emit hot shimmering fluid. They are the deepest known hydrothermal vents in the Gulf of California.

These deep-sea chimneys were discovered by MBARI scientists in 2015. The researchers call them the Auka vents. What’s intriguing is that these vents spew chemicals and host animals that are very different from those seen at Alarcón Rise, which is just 100 miles away.

On October 31, 2018, an interdisciplinary team of researchers embarked on a 21-day expedition on board the research vessel Falkor, operated by the Schmidt Ocean Institute. They will zoom in further on the Auka vents’ geology, chemistry, and biology, while continuing to look for more hydrothermal vents in the basin.

For David Caress, an MBARI geophysicist, returning to the Pescadero Basin will be especially exciting. “It will be fun to explore a place that I was involved in discovering,” he said. On this expedition, he will lead the seabed mapping team.

The Falkor carries a multibeam sonar that can make 50-meter resolution maps of the seafloor near the Auka vents. But this resolution isn’t good enough to reveal smaller features like hydrothermal chimneys.

To create more detailed maps, the same sonar technology will be deployed on an underwater robot designed by MBARI engineers and scientists, which will fly 50 meters (164 feet) above the seabed. Travelling at three knots, this autonomous underwater vehicle (AUV) can map an area about 250 meters (820 feet) wide and show features as small as a meter across. MBARI scientists made the 2015 discovery using the very same AUV.

During this expedition, geologists will use the AUV to search for new vent fields elsewhere in the Pescadero Basin, particularly the unexplored waters of Northern Pescadero Basin.

While the AUV explores surrounding areas, a sophisticated sensor package, also designed by an MBARI team, will be used to make much finer, one-centimeter resolution maps of the Auka vents. Loaded onto a remote underwater vehicle (ROV SuBastian), this package combines acoustic and optical technologies—sonar, lidar, and high-resolution stereo cameras.

These three instruments work in tandem. Multibeam sonars work where lidars won’t, for example in muddy waters. And small soft animals on the seafloor, especially sea cucumbers and sponges can be mapped with lidar but not sonar, because sound waves don’t reflect off their bodies. The camera photos, on the other hand, allow scientists to identify and size the animals.

Although this powerful ocean imaging system wasn’t used during the 2015 surveys, Caress said that his team has been testing and tweaking the system for quite a few years off the California coast, and is excited to see the new maps that will be generated.

But doing the research 3,800 meters (12,500 feet) below the surface comes with its own challenges. “We are going really deep, on a ship we have never been on, using an ROV we have never used, and the likelihood of everything working at the first go is really small. It’s often hard, but things work out eventually,” said Caress.

The expedition consists of two legs. During the first leg, researchers will carry out centimeter-scale mapping of the Auka vents using the ROV, while also making meter-scale maps of unexplored areas using the AUV, to find new chimneys. If new vents are found, geologists on board will use the ROV to collect sediment and geology samples. They also plan to collect samples of the hot fluids coming from the vents.

During the second leg, the focus will be on understanding the diversity, distribution, and metabolism of creatures living at and around the vent sites. Guided by the maps and photomosaics produced on the first leg, the biological team will explore the peculiar assemblages of tubeworms, polychaetes and chemosynthetic microbes residing there. The aim will be to compare the animals and microbes at different vent sites and link these to the chemical environments of the sites.

Such comprehensive research has the potential to advance our knowledge of the deep sea. And, with hydrothermal vents increasingly becoming a target of deep-sea mining, such interdisciplinary research may help identify areas that are unique and need protection.

Note: The above post is reprinted from materials provided by Monterey Bay Aquarium Research Institute.

Where water goes after fracking is tied to earthquake risk

This is an aerial view of hydraulic fracturing operations across the Jonah field, a large natural gas field in Wyoming.
This is an aerial view of hydraulic fracturing operations across the Jonah field, a large natural gas field in Wyoming. Credit: EcoFlight

In addition to producing oil and gas, the energy industry produces a lot of water, about 10 barrels of water per barrel of oil on average. New research led by The University of Texas at Austin has found that where the produced water is stored underground influences the risk of induced earthquakes.

Beyond supporting the link between water disposal and induced seismicity, the research also describes factors that can help reduce earthquake risk.

“If we want to manage seismicity, we really need to understand the controls,” said lead author Bridget Scanlon, a senior research scientist at UT’s Bureau of Economic Geology.

The research was published Oct. 31 in the journal Seismological Research Letters. Co-authors include Matthew Weingarten, assistant professor at San Diego State University; Kyle Murray, adjunct professor at the University of Oklahoma; and Robert Reedy, research scientist associate at the Bureau of Economic Geology. The bureau is a research unit at the UT Jackson School of Geosciences.

The researchers found that the increased pressure that is caused by storing produced water inside geologic formations raises the risk of induced seismicity. The risk increases with the volume of water injected, both at the well and regional scale, as well as the rate of injection.

Researchers specifically looked at water stored near tight oil plays, including the Bakken, Eagle Ford and Permian shale plays, and Oklahoma overall, which has high levels of induced seismicity in concentrated areas. Researchers found marked differences in the degree of seismic activity associated with underground water storage.

For example, the study found that in Oklahoma 56 percent of wells used to dispose of produced water are potentially associated with earthquakes. The next highest is the Eagle Ford Shale of South Texas, where 20 percent are potentially associated with earthquakes.

The study reported that the different levels of induced seismic activity relate to, among other reasons, how the water is managed and where it is stored underground. In Oklahoma, the tendency to store water in deep geologic formations — which are often connected to faults that can trigger earthquakes when stressed — has increased the risk of induced seismicity. In the other areas, water is stored at shallower depths, which limits exposure to potentially risky faults.

In conventional energy production, water is usually injected back into the reservoir that produced the oil and gas, which stabilizes pressure within the reservoir. However, water produced during hydraulic fracturing–the method used to access energy in tight oil plays– cannot be returned because the rock pores are too small for the water to be injected back into the rock. That water is usually injected into nearby geologic formations, which can increase pressure on the surrounding rock.

The findings are consistent with directives issued by the Oklahoma Corporation Commission (OCC) in 2015 to mitigate seismicity, which included reducing injection rates and regional injection volumes by 40 percent in deep wells. This study confirmed the changes resulted in a 70 percent reduction in the number of earthquakes over a 3.0 magnitude in 2017 compared with the peak year of 2015.

“Everything they (the OCC) did is supported by what we have in this article,” said Murray. “The decisions they made, the directives that they put out, are supported by statistical associations we found.”

The reduction in earthquakes in Oklahoma shows that subsurface management practices can influence seismic risk. However, Scanlon said the changes could come with trade-offs. For example, shallow disposal may help lower the risk of earthquakes, but the shallower storage depths could increase the risk of the produced water contaminating overlying aquifers.

“There’s no free lunch,” Scanlon said. “You keep iterating and doing things, but you must keep watching to see what’s happening.”

Reference:
Managing Basin‐Scale Fluid Budgets to Reduce Injection‐Induced Seismicity from the Recent U.S. Shale Oil Revolution. DOI: 10.1785/0220180223

Note: The above post is reprinted from materials provided by University of Texas at Austin.

Dinosaurs put all colored birds’ eggs in one basket, evolutionarily speaking

An assortment of paleognath and neognath bird eggs and a fossil theropod egg (on the right).
An assortment of paleognath and neognath bird eggs and a fossil theropod egg (on the right). Credit: Jasmina Wiemann/Yale University

A new study says the colors found in modern birds’ eggs did not evolve independently, as previously thought, but evolved instead from dinosaurs.

According to researchers at Yale, the American Museum of Natural History, and the University of Bonn, birds inherited their egg color from non-avian dinosaur ancestors that laid eggs in fully or partially open nests. The researchers’ findings appear Oct. 31 in the online edition of the journal Nature.

“This completely changes our understanding of how egg colors evolved,” said the study’s lead author, Yale paleontologist Jasmina Wiemann. “For two centuries, ornithologists assumed that egg color appeared in modern birds’ eggs multiple times, independently.”

The egg colors of birds reflect characteristic preferences in nesting environments and brooding behaviors. Modern birds use only two pigments, red and blue, to create all of the various egg colors, spots, and speckles.

Wiemann and her colleagues analyzed 18 fossil dinosaur eggshell samples from around the world, using non-destructive laser microspectroscopy to test for the presence of the two eggshell pigments. They found them in eggshells belonging to Eumaniraptoran dinosaurs, which include small, carnivorous dinosaurs such as Velociraptor.

“We infer that egg color co-evolved with open nesting habits in dinosaurs,” Wiemann said. “Once dinosaurs started to build open nests, exposure of the eggs to visually hunting predators and even nesting parasites favored the evolution of camouflaging egg colors, and individually recognizable patterns of spots and speckles.”

Co-author Mark Norell, the Macaulay Curator of Paleontology at the American Museum of Natural History, noted that “Colored eggs have been considered a unique bird characteristic for over a century. Like feathers and wishbones, we now know that egg color evolved in their dinosaur predecessors long before birds appeared.”

Reference:
Dinosaur egg colour had a single evolutionary origin, Nature (2018). DOI: 10.1038/s41586-018-0646-5

Note: The above post is reprinted from materials provided by Yale University.

Researchers discover earliest recorded lead exposure in 250,000-year-old Neanderthal teeth

A 250,000-year-old Neanderthal tooth yields an unprecedented record of the seasons of birth, nursing, illness, and lead exposures over the first three years of this child’s life.
A 250,000-year-old Neanderthal tooth yields an unprecedented record of the seasons of birth, nursing, illness, and lead exposures over the first three years of this child’s life. Credit: Tanya Smith & Daniel Green

Using evidence found in teeth from two Neanderthals from southeastern France, researchers from the Department of Environmental Medicine and Public Health at the Icahn School of Medicine at Mount Sinai report the earliest evidence of lead exposure in an extinct human-like species from 250,000 years ago.

This study is the first to report lead exposure in Neanderthal and is the first to use teeth to reconstruct climate during and timing of key developmental events including weaning and nursing duration— key determinants of population growth.

Results of the study will be published online in Science Advances on October 31st.

The international research team of biological anthropologists, archaeologists, earth scientists, and environmental exposure experts measured barium, lead and oxygen in the teeth for evidence of nursing, weaning, chemical exposure, and climate variations across the growth rings in the teeth. Elemental analysis of the teeth revealed short-term exposure to lead during cooler seasons, possibly from ingestion of contaminated food or water, or inhalation from fires containing lead.

During fetal and childhood development, a new tooth layer is formed every day. As each of these ‘growth rings’ forms, some of the many chemicals circulating in the body are captured in each layer, which provides a chronological record of exposure. The research team used lasers to sample these layers and reconstruct the past exposures along incremental markings, similar to using growth rings on a tree to determine the tree’s growth history.

This evidence allowed the team to relate the individuals’ development to ancient seasons, revealing that one Neanderthal was born in the spring, and that both Neanderthal children were more likely to be sick during colder periods. The findings are consistent with mammals’ pattern of bearing offspring during periods of increased food availability. The nursing duration of 2.5 years in one individual is similar to the average age of weaning in preindustrial human populations. The researchers note they can’t make broad generalizations about Neanderthals due to the small study size, but that their research methods offer a new approach to answering questions about long extinct species.

“Traditionally, people thought lead exposure occurred in populations only after industrialization, but these results show it happened prehistorically, before lead had been widely released into the environment,” said one of the study’s lead authors, Christine Austin, Ph.D., Assistant Professor in the Department of Environmental Medicine and Public Health at the Icahn School of Medicine at Mount Sinai. “Our team plans to analyze more teeth from our ancestors and investigate how lead exposures may have affected their health and how that may relate to how our bodies respond to lead today.”

“Dietary patterns in our early life have far reaching consequences for our health, and by understanding how breastfeeding evolved we can help guide the current population on what is good breastfeeding practice,” said Manish Arora Ph.D., BDS, MPH, Professor and Vice Chairman Department of Environmental Medicine and Public Health at the Icahn School of Medicine. “Our research team is working on applying these techniques in contemporary populations to study how breastfeeding alters health trajectories including those of neurodevelopment, cardiac health and other high priority health outcomes.”

“This study reports a major breakthrough in the reconstruction of ancient climates, a significant factor in human evolution, as temperature and precipitation cycles influenced the landscapes and food resources our ancestors relied on,” said the study’s lead author Tanya Smith, Ph.D., Associate Professor at Griffith University.

Reference:
T.M. Smith el al., “Wintertime stress, nursing, and lead exposure in Neanderthal children,” Science Advances (2018). DOI: 10.1126/sciadv.aau9483 

Note: The above post is reprinted from materials provided by The Mount Sinai Hospital.

Naturally occurring ‘batteries’ fueled organic carbon synthesis on Mars

Mars
This is a mosaic image of Mars created from over 100 images taken by Viking Orbiters in the 1970s. Credit: NASA

Mars’ organic carbon may have originated from a series of electrochemical reactions between briny liquids and volcanic minerals, according to new analyses of three Martian meteorites from a team led by Carnegie’s Andrew Steele published in Science Advances.

The group’s analysis of a trio of Martian meteorites that fell to Earth–Tissint, Nakhla, and NWA 1950–showed that they contain an inventory of organic carbon that is remarkably consistent with the organic carbon compounds detected by the Mars Science Laboratory’s rover missions.

In 2012, Steele led a team that determined the organic carbon found in 10 Martian meteorites did indeed come from the Red Planet and was not due to contamination from Earth, but also that the organic carbon did not have a biological origin. This new work takes his research to the next step–trying to understand how Mars’ organic carbon was synthesized, if not by biology.

Organic molecules contain carbon and hydrogen, and sometimes include oxygen, nitrogen, sulfur, and other elements. Organic compounds are commonly associated with life, although they can be created by non-biological processes as well, which are referred to as abiotic organic chemistry.

“Revealing the processes by which organic carbon compounds form on Mars has been a matter of tremendous interest for understanding its potential for habitability,” Steele said.

He and his co-authors took a deep dive into the minerology of these three Martian meteorites. Using advanced microscopy and spectroscopy, they were able to determine that the meteorites’ organic compounds were likely created by electrochemical corrosion of minerals in Martian rocks by a surrounding salty liquid brine.

“The discovery that natural systems can essentially form a small corrosion-powered battery that drives electrochemical reactions between minerals and surrounding liquid has major implications for the astrobiology field,” Steele explained.

A similar process could occur anywhere that igneous rocks are surrounded by brines, including the subsurface oceans of Jupiter’s moon Europa, Saturn’s moon Enceladus, and even some environments here on Earth, particularly early in this planets’ history.

The team included Carnegie’s Pamela Conrad and Jianhua Wang; Liane Benning, Richard Wirth, and Anja Schreiber of the German Research Centre for Geosciences; Sandra Siljeström of the RISE Research Institutes of Sweden; Marc Fries and Francis McCubbin of the NASA Johnson Space Center; Karyn Rogers of Rensselaer Polytechnic Institute; Jen Eigenbrode of NASA’s Goddard Space Flight Center; A. Needham of USRA–Science and Technology Institute; David Kilcoyne of Lawrence Berkeley National Laboratory; and Juan Diego Rodriguez Blanco of University of Leeds.

The paper is dedicated to the memory of Erik Hauri, a Carnegie scientist and co-author on the paper who died in September.

Note: The above post is reprinted from materials provided by Carnegie Institution for Science.

Location of wastewater disposal drives induced seismicity at US oil sites

Rig "An oil platform"
Representative Image: An oil platform

The depth of the rock layer that serves as the disposal site for wastewater produced during unconventional oil extraction plays a significant role in whether that disposal triggers earthquakes in the U.S., according to a new study that takes a broad look at the issue.

The research published in Seismological Research Letters reviewed data on wastewater disposal for oil sites in Oklahoma, eastern Montana, western North Dakota, Texas and New Mexico.

Seismicity levels are higher in Oklahoma compared to the other states in part because wastewater is injected deeper into the ground in Oklahoma, nearer to the underlying basement rock, according to study author Bridget Scanlon of the University of Texas at Austin and her colleagues.

The cumulative volume of wastewater injected into the earth in Oklahoma is also higher than in the other oil-producing areas, and can also be linked to increased rates of seismicity in the state, the researchers concluded.

The findings differ from an earlier study based on data in the mid-continent, which did not find a significant correlation between total disposed wastewater volume, or between depth of injection, and increased seismicity. The new study contains an additional 3.5 years’ worth of data on injection volume and seismicity in Oklahoma, however, and also uses a new map of basement rock depth, said Scanlon.

Unconventional U.S. oil production, which extracts oil from shales and tight rocks using hydraulic fracturing and horizontal wells, has been linked to an increase in human-induced earthquakes across the mid-continent of the United States for nearly a decade. The main driver of this increase in seismicity is the injection of wastewater produced by extraction, which increases pore pressure within rocks and can affect stress along faults in the rock layers selected for disposal.

The “tightness” of the oil-producing rock layers at these sites means that wastewater can’t be injected back into the same layers, so companies have instead found “looser,” more permeable rock layers in which to drill disposal wells.

The study by Scanlon and colleagues examined wastewater injection rates, cumulative regional injection volumes and injection proximity to basement rock for tight oil plays in Oklahoma, the Bakken play (Montana and North Dakota), the Eagle Ford play (Texas) and the Permian play (Texas and New Mexico).

Many of the wastewater disposal wells in Oklahoma are drilled into a rock layer called the Arbuckle Formation, which lies adjacent to the basement and is much deeper than the rock layers used for disposal in the Bakken, Eagle Ford and Permian plays.

Wells drilled into the Arbuckle drain water into the formation without the need for pressure at the wellhead, and the rock zone is highly permeable, which makes it an appealing disposal site, said Kyle Murray, a co-author on the study from the Oklahoma Geological Survey. The Arbuckle also has extraction wells only “in a few small areas, so disposal does not diminish producing wells.”

The ease of using the Arbuckle as a disposal site might be one reason why oil producers have chosen deeper disposal sites in Oklahoma compared to the other regions, “but drilling shallower wells and disposing in shallower zones in other plays may be related to economics. Deeper wells are much more expensive and not always successful,” he added.

Murray said oil field operators in these other regions may also know about the studies linking the increase in seismicity in Oklahoma to injection proximity to basement rock, causing them to avoid deep disposal at their sites.

The researchers noted that their findings are consistent with the reduced seismicity documented in Oklahoma after directives by the Oklahoma Corporation Commission in 2014 and 2016 to reduce injection rates and regional injection volumes, as well as to plug disposal wells drilled into the basement. These directives have led to a 70 percent reduction in the number of magnitude 3.0 or larger earthquakes in the state in 2017, relative to 2015.

There are tradeoffs between injecting wastewater into shallow versus deep rock layers, the researchers note. Shallower wells, which often cost two to three times less than deeper wells and would appear to trigger lower levels of seismicity, could contaminate aquifers with saltwater or interfere with oil production wells.

Scanlon and colleagues say one way to reduce the amount of overall wastewater injection might be to repurpose the wastewater for hydraulic fracturing. “The value of reusing produced water for hydraulic fracturing is similar to re-injecting produced water for water flooding in conventional oil reservoirs, to maintain pressure,” Scanlon said. “Reusing produced water for hydraulic fracturing would reduce water sourcing issues and water depletion related to that, and would also reduce wastewater disposal and related potential seismicity.”

This strategy might work best in places where the wastewater produced is roughly similar to the amounts needed for hydraulic fracturing, however. In Oklahoma, for instance, hydraulic fracturing operations would use up only 10 percent of the amount of produced wastewater.

Note: The above post is reprinted from materials provided by Seismological Society of America.

Micro-earthquakes preceding a 4.2 earthquake near Istanbul as early warning signs?

Illustration of the North Anatolian fault zone
Illustration of the North Anatolian fault zone (CCBY 3.0: Bohnhoff et.al., Scientific Drilling, 5, 1-10, 2017, doi:10.5194/sd-5-1-2017).

One of the high-risk geological structures lies near Istanbul, a megacity of 15 million people. The North Anatolian fault, separating the Eurasian and Anatolian tectonic plates, is a 1.200 kilometer-long fault zone running between eastern Turkey and the northern Aegean Sea. Since the beginning of the 20th century its seismic activity has caused more than 20.000 deaths. A large (Mw > 7) earthquake is overdue in the Marmara section of the fault, just south of Istanbul.

In a new study, led by Peter Malin and Marco Bohnhoff of the GFZ German Research Center for Geosciences, the authors report on the observation of foreshocks that, if analyzed accordingly and in real-time, may possibly increase the early-warning time before a large earthquake from just a few seconds up to several hours. However, the authors caution: „The results are so far based on only one – yet encouraging – field example for an ,earthquake preparation sequence’ typically known from repeated rock-deformation laboratory experiments under controlled conditions”, says Marco Bohnhoff.

The study from Peter Malin and Marco Bohnhoff, together with colleagues from the AFAD Disaster and Emergency Management Presidency in Turkey, uses waveform data from the recently implemented GONAF borehole seismic network. GONAF operates at low-magnitude detection. It allowed identifying a series of micro-earthquakes prior to an earthquake of magnitude 4.2 which occurred in June 2016 south of Istanbul and which was the largest event in the region in several years.

In the latest issue of Scientific Reports, seismic data from the GONAF network, set up by GFZ in collaboration with AFAD along the Marmara Sea near Istanbul, is processed and analyzed with novel processing techniques. The high resolution borehole seismic array allowed for the detection of tens of seismic events prior to the mainshock. These small events would have been below the detection threshold of most seismic networks worldwide. By means of the new processing technique, clustering and similarity of the seismic signals was shown to substantially increase in the hours prior to the Mw 4.2 earthquake. If this so-called emergent failure process would be a persistent feature of seismicity there, implementing real-time processing of the novel technique could extend the warning time for future earthquakes in the Istanbul region and lead to a major improvement in the early-warning system for the densely populated area of the Turkish megacity.

“Our study shows a substantial increase in self-similarity of the micro-quakes during the hours before the mainshock,” says Professor Bohnhoff of the GFZ; “while the current early-warning system in place in Istanbul relies on the arrival times of seismic waves emitted from the hypocentre to the city and is therefore restricted to a couple of seconds at maximum”. While similar precursory activity has been detected for recent large earthquakes in Japan (2011 Mw9 Tohoku-Oki) and Chile (2014 Mw8.1 Iquique), this is at present by no means a ubiquitous observation and needs further testing before its implementation.

Reference:
Malin, E.P., Bohnhoff, M., Blümle, F., Dresen, G., Martínez-Garzón, P., Nurlu, M., Ceken, U., Kadirioglu, F.T., Kartal, R.F., Kilic, T., Yanik, K., 2018. Microearthquakes preceding a M4.2 Earthquake Offshore Istanbul. Nature Scientific Reports. DOI: 10.1038/s41598-018-34563-9

Note: The above post is reprinted from materials provided by GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre.

Paleontologists discovered six new species in the East African Rift

Ammonite Fossil
Ammonite Fossil

Sometimes hidden clues beneath our feet can reveal intriguing stories about the impacts of environmental change.

Six new species of invertebrates were discovered during a paleontological exploration of rift deposits in southwestern Tanzania by Ohio University professor, Nancy Stevens and her research team. After analyzing invertebrate fossils that were alive 24 to 26 million years ago in the Rukwa Rift Basin, OHIO paleontologists published the first documentation of a rapid diversification of freshwater gastropod species at a time of pivotal environment change in this specific area. Their article, “Morphological diversification of ampullariid gastropods (Nsungwe Formation, Late Oligocene, Rukwa Rift Basin, Tanzania) is coincident with onset of East African rifting,” was published in Papers in Palaeontology.

“From the very start of this project, I was extremely intrigued because we were working on rare fossils from a geologically interesting location,” said Y. Ranjeev Epa, M.S. ’17, an Ohio University geology master’s student who studied and identified the fossils for his thesis. “These fossils had a lot of interesting stories to tell us and I am very happy that we were able to expand the existing knowledge on the evolutionary history, ecology and biogeography of this family.”

The new species evolved in what is now known as the East African Rift about 25 million years ago, as the Horn of Africa began splitting away from the mainland due to movements of the earth’s plates. This interval in time is called the late Oligocene, a key period of transition between ancient and more modern ecosystems. The research team emphasized how the discovery of these new species can help us understand how organisms respond to environmental change.

“The timing of this evolutionary burst is coincident with the onset of the timing of the East African Rift,” said Dr. Alycia Stigall, Professor of Geological Sciences, a researcher on the team. “The new rift produced novel environments, and the gastropods very rapidly evolved to exploit new niches.”

The fossils examined in the study were collected by Stevens and her research group, which has been conducting paleobiological and geological research in the Rukwa Rift Basin in Tanzania for nearly two decades. Their research has produced the most precise age for the onset of rifting in the western branch of the East African Rift System, as well as the earliest evidence of the split between Old World monkeys and apes. Until now, the evolutionary history of invertebrate faunas in this area have barely been studied.

Previously, the Rukwa Rift Basin team has reported on the discovery of other new species to science, including dinosaurs and bizarre mammal-like crocs from older deposits in the region. It is clear that the Rukwa Rift preserves a special window into the evolution of ecosystems on the African continent, with potentially even more discoveries to come.

Reference:
Y. Ranjeev Epa et al. Morphological diversification of ampullariid gastropods (Nsungwe Formation, Late Oligocene, Rukwa Rift Basin, Tanzania) is coincident with onset of East African rifting, Papers in Palaeontology (2018). DOI: 10.1002/spp2.1108

Note: The above post is reprinted from materials provided by Ohio University.

Tiny beetle trapped in amber might show how landmasses shifted

The fossil beetle, Propiestus archaicus, preserved in amber.
The fossil beetle, Propiestus archaicus, preserved in amber. Credit: Field Museum, Shuhei Yamamoto

In 2016, Shuhei Yamamoto obtained a penny-sized piece of Burmese amber from Hukawng Valley in northern Myanmar, near China’s southern border. He had a hunch that the three-millimeter insect trapped inside the amber could help ansshow why our world today looks the way it does.

After carefully cutting and polishing the amber, Yamamoto determined that the insect, smaller than the phone-end of an iPhone charger, was a new species to science. The beetle, which lived 99 million years ago, is a relative of insects alive today that live under tree bark, and it’s giving scientists hints about how Earth’s landmasses were arranged millions of years ago.

“This is a very rare find,” Yamamoto said, a Field Museum researcher and lead author of a paper in the Journal of Systematic Palaeontology describing the new species. The fossil beetle is one of the oldest known members of its family — its name, Propiestus archaicus, refers to the fact that it’s an ancient relative of the flat rove beetles in the Piestus genus today of which now dominates the South America.

While dinosaurs roamed much of Earth 99 million years ago during the Late Cretaceous era, Propiestus, with its flattened body and short legs, was busy conquering smaller turf underneath the bark of rotting trees. Its long, slender antennae were the clear giveaway to Yamamoto that Propiestus was lived in this environment — similar to today’s flat rove beetles.

“The antennae probably had a highly sensitive ability as a sensory organ,” Yamamoto said. Smaller hair-like structures attached perpendicular to the antennae would have increased its ability to feel out its surroundings. “There wouldn’t have been a lot of space available in the beetle’s habitat, so it was important to be able to detect everything,” he explains.

Propiestus is just one of the hundreds of thousands of Burmese amber inclusions — another word for the objects trapped inside the amber — that scientists have extensively researched over the last 15 years. Many small insects that lived during the Cretaceous era met their maker at the hands of tree sap that engulfed the bugs and hardened into amber. The bugs trapped inside fossilized and remained frozen for millions of years, unaffected by the passage of time. The hardened amber, covered by soil, decayed leaves, and other organic material, eventually blended in with its surroundings.

Because of this, amber in nature doesn’t look like it does in jewelry — in fact, it doesn’t look like anything special at all. The small clumps of unpolished amber look like rocks, meaning only those experienced in amber identification, mostly local miners, are able to find them.

After miners extract the amber, the clumps are either sold into the jewelry trade or to scientists like Yamamoto to study the inclusions. For Yamamoto’s piece of amber, he used sandpaper to carefully polish the amber just enough to make Propiestus clearly visible.

“It was very exciting, because the cutting process is very sensitive,” Yamamoto said. “If you cut too fast or apply too much pressure, you destroy the inclusion inside very quickly.”

Once the amber was polished, the beetle was clearly visible, enabling Yamamoto and his colleagues to study the beetle and determine its closest living relatives. Propiestus’s flat rove beetle cousins alive today are found mostly in South America, with the exception of one species in Southern Arizona. Myanmar, where Propiestus was found, is literally on the other side of the globe from these places. But it hasn’t always been that way.

Millions of years ago, Myanmar and South America were actually quite close to each other, all fused together as part of the megacontinent Gondwanaland, which formed when the earlier megacontinent Pangea broke apart. Gondwanaland itself eventually broke apart, helping to form the continents we recognize on a map today.

Scientists have a clear sense of which of today’s continents and subcontinents would have comprised Gondwanaland and which would have made up its sister continent, Laurasia. However, the detailed timing and pattern of Gondwanaland’s split into smaller continents is disputable. Searching for supporting or contrasting evidence means analyzing fossils, some as small as Propiestus, to compare their similarities to other organisms discovered across the globe that might have inhabited the same space long ago.

“Like koalas and kangaroos today, certain animals that we think lived in Gondwanaland are only found in one part of the world. Although Propiestus went extinct long ago, our finding probably shows some amazing connections between Southern Hemisphere and Myanmar,” Yamamoto said. “Our finding fits well with the hypothesis that, unlike today, Myanmar was once located in the Southern Hemisphere.”

Many inclusions in Burmese amber that have been researched in the last 15 years, including Propiestus, show signs that show traits in common with insects from Gondwanaland. By studying these tiny creatures trapped in amber, we’re finding answers to the questions surrounding Earth’s structure and the life it supported millions of years ago.

“This fossil helps us understand life in the Mesozoic era,” he said. “We need to think about everything from that time, both big and small.”

Note: The above post is reprinted from materials provided by Field Museum.

Incredible moment Anak Krakatau erupts, Oct 2018

Krakatoa, or Krakatau (Indonesian: Krakatau), is a volcanic island situated in the Sunda Strait between the islands of Java and Sumatra in the Indonesian province of Lampung. The name is also used for the surrounding island group comprising the remnants of a much larger island of three volcanic peaks which was obliterated in a cataclysmic 1883 eruption.

In 1927, a new island, Anak Krakatau, or “Child of Krakatoa”, emerged from the caldera formed in 1883 and is the current location of eruptive activity.

The most notable eruptions of Krakatoa culminated in a series of massive explosions over August 26–27, 1883, which were among the most violent volcanic events in recorded history.

With an estimated Volcanic Explosivity Index (VEI) of 6, the eruption was equivalent to 200 megatons of TNT (840 PJ)—about 13,000 times the nuclear yield of the Little Boy bomb (13 to 16 kt) that devastated Hiroshima, Japan, during World War II, and four times the yield of Tsar Bomba (50 Mt), the most powerful nuclear device ever detonated.

The 1883 eruption ejected approximately 25 km3 (6 cubic miles) of rock. The cataclysmic explosion was heard 3,600 km (2,200 mi) away in Alice Springs, as well as on the island of Rodrigues near Mauritius, 4,780 km (2,970 mi) to the west.

According to the official records of the Dutch East Indies colony, 165 villages and towns were destroyed near Krakatoa, and 132 were seriously damaged. At least 36,417 people died, and many more thousands were injured, mostly from the tsunamis that followed the explosion. The eruption destroyed two-thirds of the island of Krakatoa.

Eruptions in the area since 1927 have built a new island at the same location, named Anak Krakatau (which is Indonesian for “Child of Krakatoa”). Periodic eruptions have continued since, with recent eruptions in 2009, 2010, 2011, and 2012. In late 2011, this island had a radius of roughly 2 kilometres (1.2 mi), and a highest point of about 324 metres (1,063 ft) above sea level, growing 5 metres (16 ft) each year. In 2017 the height of Anak Krakatau was reported as over 400 metres above sea level.

Dechen Cave, Germany

Dechen Cave, Germany
Dechen Cave, Germany

The Dechen Cave (German: Dechenhöhle) in Iserlohn, Germany is one of the most beautiful and most visited show caves in Germany. It is located in the northern part of the Sauerland at Iserlohn (Grüne district). 360 metres of the 870-metre long cave have been laid out for visitors, beginning at the spot where, in 1868, the cave was discovered by two railway workers.

The cave is named after Oberberghauptmann Heinrich von Dechen (1800–1889), in recognition of his contribution to researching the geology of the Rhineland and Westphalia.

Due to its discovery by rail workers, the cave was first owned by the local railway company – which built the Letmathe–Fröndenberg railway – and later on by the National railway company, the last one was the Deutsche Bundesbahn. In 1983 the cave was taken over by the Mark Sauerland Touristik GmbH.

Because the cave was found and owned by the railway, a halt was built next to the visitors’ entrance. Today, the Ruhr-Sieg-Express (RE16) and Ruhr-Sieg-Bahn (RB91) services stop at the halt. Both the RE16 and the RB91 services are operated by Abellio Rail NRW. It is the only cave in Germany with its own halt.

Summery:

Location: Sauerland, Germany
Length: 870 metres
Elevation: 250 metres
Discovery: 1868
Geology: Rhenish Massif
Show cave opened: 1868
Show cave length: 360 metres

 

The formation of large meteorite craters is unraveled

66 million years ago a meteorite of a diameter 14 km wide struck the Earth with an enormous speed of 20.000 kilometers per hour drilling itself 20 km into the Earth's crust
66 million years ago a meteorite of a diameter 14 km wide struck the Earth with an enormous speed of 20.000 kilometers per hour drilling itself 20 km into the Earth’s crust (1). Due to the impact temperatures of 10.000°C emerged temporarily, melting and evaporating the meteorite and parts of the Earth’s crust. A shock wave arose molding a crater 30 km deep and 100 km wide (2). As the crater collapsed, the mass of rock behaved like a viscous mass, shooting up to form a 20 km high mountain (3). The liquid mass of the rocks of the collapsed mountain moved beyond the crater margins and solidified. This led both to the summit ring and to the flattening and widening of the crater (4). Credit: UHH/Min/Fuchs

About 66 million years ago, a meteorite hit the Earth of the Yucatan Peninsula in what is now Mexico. This event triggered a mass extinction that eradicated approximately 75 percent of all species and ended the era of dinosaurs. Like Prof. Dr. Ulrich Riller of the Institute of Geology of the University of Hamburg and co-workers report in “Nature”, the hitherto mysterious formation of the crater and its mountaneous peak ring. The peak rises in the middle of the crater above the otherwise flat crater floor. In the future, these findings can help to decipher the formation of the largest craters in our solar system.

Much has been written and discussed about the gigantic crater with a diameter of about 200 kilometers, the center of which lies near the Mexican port city of Chicxulub. How the giant crater took its form has been a mystery until today. In particular, the formation of a circular series of hills could not be explained in detail. This so-called peak ring rises in the crater several hundreds of meters above the shallow ground and can therefore be found in other large craters in our solar system.

The structural geologist Prof. Dr. Ulrich Riller and an international team of scientists have now succeeded in describing for the first time the extreme mechanical behavior of rocks in the event of a large meteorite impact. The researchers found the evidence in the Chicxulub Crater as part of Expedition 364 of the International Ocean Discovery Program (IODP) and the International Continental Scientific Drilling Program (ICDP).

Computer simulations have shown that craters this size form within a few minutes. This means that solid rock behaves like a fluid for a short time and solidifies very quickly during cratering. As the science team reports in the current issue of the journal “Nature”, their research supports the hypothesis of so-called acoustic fluidization, where rock behaves like a viscous mass through contemporary pressure changes (vibrations). The obtained drill cores display a variety of zones of broken rock, which the team considers to be evidence of transient fluidity of the rock. The team was able to transmit the results in numeric models, which simulate the exact formation of the crater and peak ring.

“The results of our research team have far-reaching consequences for understanding the formation of large impact craters in our solar system,” explains Prof. Riller.

Reference:
Rock fluidisation during peak-ring formation of large impact structures, Nature 562, 511 (2018). DOI: 10.1038/s41586-018-0607-z

Note: The above post is reprinted from materials provided by University of Hamburg.

What is a Plutonic Igneous Rock?

Igneous intrusion
Representative Image: Igneous intrusion

In geology, a pluton is a body of intrusive igneous rock (called a plutonic rock) that is crystallized from magma slowly cooling below the surface of the Earth. Plutons include batholiths, stocks, dikes, sills, laccoliths, lopoliths, and other igneous formations. In practice, “pluton” usually refers to a distinctive mass of igneous rock, typically several kilometers in dimension, without a tabular, or flat, shape like those of dikes and sills. Examples of plutons include Denali (formerly Mount McKinley) in Alaska; Cuillin in Skye, Scotland; Cardinal Peak in Washington State; Mount Kinabalu in Malaysia; and Stone Mountain in the US state of Georgia.

The most common rock types in plutons are granite, granodiorite, tonalite, monzonite, and quartz diorite. Generally light colored, coarse-grained plutons of these compositions are referred to as granitoids.

The term originated from Pluto, the classical god of the underworld. The use of the name and concept goes back to the beginnings of the science of geology in the late 18th century and the then hotly debated theories of plutonism (or vulcanism), and neptunism regarding the origin of basalt.

New species of ‘missing link’ between dinosaurs and birds identified

Dr. John Nudds with Archaeopteryx fossil specimen at the European Synchrotron in Grenoble.
Dr. John Nudds with Archaeopteryx fossil specimen at the European Synchrotron in Grenoble. Credit: Image courtesy of The University of Manchester

Known as the ‘Icon of Evolution’ and ‘the missing link’ between dinosaurs and birds, Archaeopteryx has become one of the most famous fossil discoveries in Palaeontology.

Now, as part of an international team of scientists, researchers at The University of Manchester have identified a new species of Archaeopteryx that is closer to modern birds in evolutionary terms.

Dr John Nudds, from the University’s School of Earth and Environmental Sciences, and the team have been re-examining one of the only 12 known specimens by carrying out the first ever synchrotron examination, a form of 3D X-ray analysis, of an Archaeopteryx.

Thanks to this new insight, the team says that this individual Archaeopteryx fossil, known as ‘specimen number eight’, is physically much closer to a modern bird than it is to a reptile. Therefore, it is evolutionary distinctive and different enough to be described as a new species — Archaeopteryx albersdoerferi.

The research, which is being published in journal Historical Biology, says that some of the differing skeletal characteristics of Archaeopteryx albersdoerferi include the fusion of cranial bones, different pectoral girdle (chest) and wing elements, and a reinforced configuration of carpals and metacarpals (hand) bones.

These characteristics are seen more in modern flying birds and are not found in the older Archaeopteryx lithographica species, which more resembles reptiles and dinosaurs.

Specimen number eight is the youngest of all the 12 known specimens by approximately half a million years. This age difference in comparison to the other specimens is a key factor in describing it as a new species.

Dr Nudds explains: “By digitally dissecting the fossil we found that this specimen differed from all of the others. It possessed skeletal adaptations which would have resulted in much more efficient flight. In a nutshell we have discovered what Archaeopteryx lithographica evolved into — i.e. a more advanced bird, better adapted to flying — and we have described this as a new species of Archaeopteryx.”

Archaeopteryx was first described as the ‘missing link’ between reptiles and birds in 1861 — and is now regarded as the link between dinosaurs and birds. Only 12 specimens have ever been found and all are from the late Jurassic of Bavaria, now Germany, dating back approximately 150 million years.

Lead author, Dr Martin Kundrát, from the University of Pavol Jozef Šafárik, Slovakia, said: “This is the first time that numerous bones and teeth of Archaeopteryx were viewed from all aspects including exposure of their inner structure. The use of synchrotron microtomography was the only way to study the specimen as it is heavily compressed with many fragmented bones partly or completely hidden in limestone.”

Dr Nudds added: “Whenever a missing link is discovered, this merely creates two further missing links — what came before, and what came after! What came before was discovered in 1996 with the feathered dinosaurs in China. Our new species is what came after. It confirms Archaeopteryx as the first bird, and not just one of a number of feathered theropod dinosaurs, which some authors have suggested recently. You could say that it puts Archaeopteryx back on its perch as the first bird!”

Reference:
Martin Kundrát, John Nudds, Benjamin P. Kear, Junchang Lü, Per Ahlberg. The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany. Historical Biology, 2018; 31 (1): 3 DOI: 10.1080/08912963.2018.1518443

Note: The above post is reprinted from materials provided by The University of Manchester.

Related Articles